Homework 3

Due by Thursday July 11th at 11:59pm on Gradescope.

The following textbook problems are suggested for review but should not be submitted:

3.2, 3.3, 3.4.

Exercise 1. (i) For every *n*, let S_n be the set of all rational numbers that can be represented as a fraction p/q with $|q| \le n$. Show that S_n is complete.

(ii) Show that

$$\mathbb{Q}=\bigcup_{n\in\mathbb{N}}S_n.$$

(iii) Show that \mathbb{Q} is not complete.

Exercise 2. Let $(s_n)_n$ be a sequence of real numbers. Show that if $(s_n)_n$ converges then $(|s_n|)_n$ converges. Given an example to show that the converse is not true.

Exercise 3. Give an example of two sequences $(s_n)_n$ and $(t_n)_n$ of real numbers such that

$$\liminf_n (s_n t_n) \neq \liminf_n s_n \cdot \liminf_n t_n$$

where all terms in the above are finite (i.e. not $\pm \infty$).

Exercise 4. Show that for two real sequences $(s_n)_n$ and $(t_n)_n$ that

$$\limsup_n (s_n + t_n) \le \limsup_n s_n + \limsup_n t_n$$

(whenever the right hand side is not of the form $\infty - \infty$).

Exercise 5. Consider the sequence defined by

$$s_n=1+\frac{1}{2}+\cdots+\frac{1}{n}.$$

(i) Show that $(s_n)_n$ is monotone.

(ii) Show that

$$s_{2^{n+1}}-s_{2^n}\geq \frac{1}{2}.$$

Deduce that $(s_n)_n$ is unbounded.

(iii) Deduce from (i) and (ii) that $(s_n)_n$ does not converge.