
Midterm 2 Practice Questions

Note: This is to help study for Midterm 2. While the questions are similar to what a real exam may
contain they may lean on the harder side. This should be treated as a study guide and not a mock
exam. More care will be taken tomake sure the real exam is manageable both in difficulty and amount
of time required to complete.

Problem 1. Determine whether the following series are convergent or divergent:

(i)
∞∑
n=1

n2 − 1
n3 + 1

(ii)
∞∑
n=0

sin(2n)
1 + 2n

(iii)
∞∑
n=0

(−1)n sin(n)

Solution. (i) When n is large, we have that (n2 − 1)/ (n3 + 1) ∼ n2/n3 = 1/n so we expect that this
series to diverge since

∑
n 1/n diverges. For this, we have that

n2 − 1
n3 + 1

≥ 1
2
· n

2 − 1
n3

=
1
2

(
1
n
− 1

n3

)
.

By the p-series test,
∑

n(1/n− 1/n3) is a sum of a divergent series and a convergent series, hence diver-
gent. Thus the original series must diverge by comparison.

(ii) We have that ∣∣∣∣ sin(2n)
1 + 2n

∣∣∣∣ ≤ 1
1 + 2n

≤ 1
2n

and
∑

n 2−n converges by the geometric series test. Hence our original series converges absolutely by
comparison.

(iii) Wehave that limn→∞(−1)n sin(n)does not exist, so our series diverges by the divergence test.

Problem 2. Find the radius of convergence of the following power series:

(i)
∞∑
n=1

2n

nn
· zn

1



(ii)
∞∑
n=0

(
1 +

1
n

)n2

zn

[You may use that limn→∞(1 + 1
n )n = e.]

Solution. (i) We have that

lim sup
n

(
2n

nn

)1/n
= lim sup

n

2
n

= lim
n

2
n

= 0

soR = ∞.

(ii) We have that

lim sup
n

((
1 +

1
n

)n2)1/n

= lim sup
n

(
1 +

1
n

)n

= lim
n

(
1 +

1
n

)n

= e

soR = 1/e.

Problem 3. Let f : R → R be given by

f (x) =

 1
x x ∈ R \Q

1 x ∈ Q.

Determine where f is continuous.

Solution. Suppose that f is continuous at x = a. Then since R \ Q and Q are dense in R, we may
find a sequence (rn)n of irrationals with rn → a and a sequence of rationals (qn)n with qn → a. Then
since f is continuous at a, we must have that f (qn) → f (a) and f (rn) → f (a). But

f (qn) = 1 → 1

and
f (rn) =

1
rn

→ 1
a
.

Thus
f (a) = 1 =

1
a
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which is only possible if a = 1.
On the other hand, we claim f is continuous at x = 1. To do this, fix ε > 0. Since 1/x is continuous

at 1, we may find δ > 0 such that

|x − 1| < δ =⇒
∣∣∣∣ 1
x
− 1
∣∣∣∣ < ε. (†)

But then
|x − 1| < δ =⇒ |f (x) − 1| < ε (‡)

since either x is irrational, in which case (‡) follows from (†), or x is rational in which case f (x) = 1 so
(‡) is trivial.

Problem 4. Given any metric space X , it is a fact that the diagonal

Δ = {(x, x) : x ∈ X} ⊆ X × X

is closed. Using this fact, prove the following:
Let f, g : X → Y be continuous functions. Show that

{x ∈ X : f (x) = g(x)} ⊆ X

is closed.

Solution. Consider the function h = (f, g) : X → X × X which is continuous as each component is
continuous. Then we have that

x ∈ h−1(Δ) ⇐⇒ h(x) = (f (x), g(x)) ∈ Δ

⇐⇒ f (x) = g(x).

Thus
{x ∈ X : f (x) = g(x)} = h−1(Δ)

which is the pre-image of a closed set under a continuous map, hence closed.

Problem 5. Let f : X → Y be continuous and E ⊆ X . Show that f (E) ⊆ f (E) and give an example
to show that this containment may be proper.

Solution. Set S = f (E) so that S is closed and S ⊇ f (E). Then f −1(S) is closed since f is continuous,
and moreover

f −1(S) ⊇ f −1(f (E)) ⊇ E.
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Thus f −1(S) is a closed set containing E, so f −1(S) ⊇ E by definition of E. Hence

f (E) ⊆ S = f (E)

as required.
To see that this containment may be proper, consider the map

f : (R, ddisc) R
x x

givenby the set-theoretic identity fromRwith the discretemetric toRwith the standardmetric. Then
f is continuous and

f ((0, 1)) = f ((0, 1)) = (0, 1)

but
f ((0, 1)) = (0, 1) = [0, 1].

Problem 6. Let (X, d) be a metric space and let E ⊆ X .

(i) Show that ρE : X → R defined by

ρE(x) = inf
y∈E

d(x, y)

is continuous.

(ii) Show that {x ∈ X : ρE(x) = 0} = E.

Solution. (i) Let x, y ∈ X . We have that for any z ∈ E

d(x, z) ≤ d(x, y) + d(y, z).

Taking the infinimum over z ∈ E we see that

ρE(x) = inf
z∈E

d(x, z)

≤ inf
z∈E

(
d(x, y) + d(y, z)

)
= d(x, y) + ρE(y).

Hence
ρE(x) − ρE(y) ≤ d(x, y)
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and swapping the roles of x and y in the above argument we find that

|ρE(x) − ρE(y)| ≤ d(x, y).

Thus ρE is 1-Lipschitz and hence continuous.

(ii) Let Z(ρE) = {x ∈ X : ρE(x) = 0}. Then Z(ρE) ⊇ E by definition of ρE and Z(ρE) = ρ−1
E ({0}) is

closed since ρE is continuous. Thus Z(ρE) ⊇ E.

On the other hand, suppose that x ∈ Z(ρE). Then by definition of ρE we may find a sequence
(yn)n in E with yn → x. Thus x ∈ limE = E so we conclude that Z(ρE) ⊆ E giving the reverse
containment.
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