
Final Exam Practice Questions

Note: This is to help study for the Final Exam. While the questions are similar to what a real exam
may contain they may lean on the harder side. This should be treated as a study guide and not a mock
exam. More care will be taken tomake sure the real exam is manageable both in difficulty and amount
of time required to complete.

Problem 1. For the following sets determine whether they are (i) open, (ii) closed, and/or (iii) com-
pact. Note that multiple or none of the properties may hold in some cases. The sets will be listed in
the form Y ⊆ X and you should answer for the set Y viewed as a subset of X .

(i) S1 \ {(1, 0)} ⊂ R2 where S1 = {v ∈ R2 : ∥v∥ = 1} is the unit circle.

(ii) {x ∈ Q : x2 < 2} ⊆ Q

Solution. (i) It is not open sincenoball around anypoint is fully contained inS1, let aloneS1\{(1, 0)}.

It is not closed since (1, 0) is a limit point of S1 \ {(1, 0)}.

It is not compact since it is not closed.

(ii) Set S = {x ∈ Q : x2 < 2}. Consider the continuous function f (x) = x2 fromQ → R. Then

S = f −1((−∞, 2))

and hence is open. Moreover, since
√

2 is irrational we also have that

S = f −1((−∞, 2])

hence is closed.

S is not compact since when viewed as a subset of R, S is not closed (e.g.
√

2 is a limit point not
contained in S).

Problem 2. Let K be a compact metric space, S ⊆ K any subset, and f : S → Y a uniformly
continuous function.

(i) Show that for any δ > 0, S may be written as the union of finitely many subsets {E1, . . . , En}with

diamEi = sup
x,y∈Ei

dS(x, y) < δ

for all i = 1, . . . , n.
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(ii) Deduce using (i) that the image of f is bounded.

Solution. (i) For every δ > 0 we have that {Bδ/4(x) : x ∈ K} is an open cover ofK . By compactness,
we may write

K = Bδ/4(x1) ∪ · · · ∪ Bδ/4(xn).

Set Ei = Bδ/4(xi) ∩ S. Then S = E1 ∪ · · · ∪ En and

diamEi ≤ diamBδ/4(xi) ≤ δ/2 < δ

as required.

(ii) Since f is uniformly continuous, let δ > 0 be such that

dS(x, y) < δ =⇒ dY (f (x), f (y)) < 1. (†)

By (i), we may write S = E1 ∪ · · · ∪ En where each Ei has diamEi < δ. By (†) we have that

diam f (Ei) = sup
x,y∈Ei

dY (f (x), f (y)) ≤ 1.

Thus f (S) = f (E1) ∪ · · · ∪ f (En) is a finite union of bounded sets, hence bounded.

Problem 3. Compute the following integral justifying rigorously your steps:∫ 1/2

0

x
(1 − x2)2 dx.

Solution. We have an anti-derivative

F (x) =
1

2(1 − x2)

and the integrand is continuous. Thus the fundamental theorem of calculus applies so we have∫ 1/2

0

x
(1 − x2)2 dx = F (1/2) − F (0) =

1
6
.

Alternatively, if one doesn’t immediately see the anti-derivative, a more methodical approach is to use
the substitution u = 1 − x2.

Problem 4. Consider a differentiable function f : R → Rwhich takes the following values:
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x f (x)

1 7
2 3
3 5

Is it true that f ′(x) must equal zero at some point? Prove or give a counterexample.

Solution. By the mean value theorem, there exists some x1 ∈ (1, 2) such that

f ′(x1) =
3 − 7
2 − 1

= −4

and some x2 ∈ (2, 3) such that
f ′(x2) =

5 − 3
3 − 2

= 2.

Since derivatives satisfy the intermediate value theorem (regardless of whether they are continuous or
not) there must exist some ξ ∈ (x1, x2) such that f ′(ξ ) = 0.

Problem 5. Find a power series representation of the function

f (x) =
1

(1 − x)2

on the ball B1(0) and show that it converges to f . [Hint: Start with the geometric series.]

Solution. We have that
1

1 − x
=

∞∑
n=0

xn

on B1(0). Then we have as a result in class that power series may be differentiated term-wise on their
discs of convergence. Thus

1
(1 − x)2 =

d
dx

1
1 − x

=
∞∑
n=0

nxn−1.

Problem 6. Let f : (a, b) → R be a twice differentiable function with f ′′ continuous. Prove that

lim
h→0

f (x − h) − 2f (x) + f (x + h)
h2 = f ′′(x).

Solution. Define a new function

g(h) = f (x − h) − 2f (x) + f (x + h)
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which is twice differentiable as f is and g′′ is continuous since f ′′ is. Notice that

g(0) = 0, g′(0) = 0, g′′(0) = 2f ′′(x).

By Taylor’s theorem, for every h ̸= 0, we may find ξ be between 0 and h such that

g(h) = g(0) + g′(0)h +
g′′(ξ )

2
h2

=
g′′(ξ )

2
h2

so that
g(h)
h2 =

g′′(ξ )
2

.

Since g′′ is continuous, letting h → 0 we see that ξ → 0 so

lim
h→0

g(h)
h2 =

g′′(0)
2

= f ′′(x)

as desired.

Problem 7. Let A ⊆ [a, b] be a dense subset. Suppose that f : [a, b] → R and g : [a, b] → R are
integrable functions such that f (x) = g(x) for all x ∈ A. Show that∫ b

a
f dx =

∫ b

a
g dx.

Solution. Consider h = f − g which is integrable and satisfies h(x) = 0 for all x ∈ A. Fix ε > 0.
We may find a partition P = {x0, . . . , xn} with U (P, h) − L(P, h) < ε. By density of A, we may find
ti ∈ [xi−1, xi] ∩ A for all i = 1, . . . , n. Then

n∑
i=1

h(ti)Δxi = 0

but ∣∣∣∣∣
∫ b

a
h dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a
h dx −

n∑
i=1

h(ti)Δxi

∣∣∣∣∣ < ε.

Since ε > 0 was arbitrary, we find that
∫ b
a h dx = 0 which gives the result.
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Problem 8. Consider the sequence of functions fn : [0, 1] → R given by

fn(x) =

n if 0 < x < 1/n

0 otherwise.

Find a function f such that fn → f pointwise. Is the convergence uniform?

Solution. Given any 0 < x ≤ 1 for n sufficiently large we have that 1/n < x so fn(x) = 0. Thus
fn(x) → 0 in this case. Moreover, we have that fn(0) = 0 for all n so fn(0) → 0.

We conclude that fn → 0 pointwise. This convergence is not uniform, however. Indeed, there
exists noN such that |fn(x)| < 1 for all x ∈ [0, 1] and n ≥ N since sup |fn(x)| = n.
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