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1 Preliminaries

We quickly recall the notion of hypercohomology. For a spaceX and a sheafF onX , we defineHk(X,F) by taking an
injective resolution 0 → F → I• and setting

H∗(X,F) = H∗(Γ(X, I•)).

More generally, notice that a resolution 0 → F → I• is simply a quasi-isomorphism (i.e. a chain map inducing
an isomorphism on cohomology) between the complex of sheaves F supported in degree zero and I•. Thus, to
take the cohomology of a complex F• of sheaves on X not-necessarily supported in degree zero, we should take a
quasi-isomorphism F• ≃−→ I•, where each Ii is injective, and set

H∗(X,F•) = H∗(Γ(X, I•)).

This is just (up to taking cohomology) the derived functor of global sections, viewed as a functor Ch(ShvAb(X )) →
Ch(Ab), i.e.H∗(X,F•) = H∗(RΓ(X,F•)).

2 Introduction

Let X be a smooth complex projective variety. By applying GAGA and using (p, q)-decomposition of complex dif-
ferential forms, one may show that the hypercohomology of the complex of holomorphic or algebraic differential
forms computes the usual de Rham cohomology, i.e.

Hk(X, (Ω•
X , d)) ∼= Hk

dR(X an,C).

Moreover, by formal manipulations, we have that

Hk(X, (Ω•
X , 0)) = Hk(X,

⊕
i

Ωi
X [−i])

∼=
⊕
i

Hk−i(X,Ωi
X )

∼=
⊕
p+q=k

Hq(X,Ωp
X ).
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Using these, one way to state the classical Hodge decomposition is that

Hk(X, (Ω•
X , d)) ∼= Hk(X, (Ω•

X , 0)). (2.0.1)

Written thisway, onenaturally askswhether there exists somemore fundamental relationbetween theobjects (Ω•
X , d)

and (Ω•
X , 0) fromwhich theHodge decomposition follows by passing to cohomology. The non-abelianHodge the-

orem provides such a result by categorifying the classical Hodge decomposition.
To arrive at such a result, one should figure out how to view (Ω•

X , d) and (Ω•
X , 0) geometrically.

Let F be a vector bundle on X and let∇ be a flat connection on F, i.e. aC-linear morphism∇ : F → F ⊗ Ω1
X

satisfying the Leibniz rule. Then one may naturally, by flatness of∇, associate to (F,∇) the complex

F F ⊗ Ω1
X F ⊗ Ω2

X · · · .∇ ∇ ∇

Doing this, we may view (Ω•
X , d) as arising from the trivial line bundleOX with flat connection d.

This suggests that (Ω•
X , 0) may also be viewed as a complex arising from the trivial line bundle on X with some

additional structure. The correct structure to consider ends up being the notion of aHiggs field.

Definition 2.1. Let F be a vector bundle on X . A Higgs field on F is a section φ ∈ Γ(X,End(F) ⊗ Ω1
X ) which

commutes with itself, i.e. φ ∧ φ = 0. The pair (F, φ) is referred to as aHiggs bundle.

Given a Higgs bundle (F, φ) on X , we may view φ as a morphism φ : F → F ⊗ Ω1
X and consider the complex

F F ⊗ Ω1
X F ⊗ Ω2

X · · ·φ φ φ
(2.0.2)

where we extend φ to morphisms F ⊗ Ωn
X → F ⊗ Ωn+1

X by acting on the F component. The fact that φ ∧ φ = 0
ensures that (2.0.2) is a complex. Note that (OX , 0) is then a Higgs bundle with associated complex (Ω•

X , 0).
One may then hope that the correct form of the NAHT is an equivalence between the two categories

{
vector bundles with
flat connection over X

} {
Higgs bundles

over X

}
∼

whichpreserves the cohomologyof thenaturally associated complexes, and forwhich (OX , d) corresponds to (OX , 0).
Up to some stability conditions, this is true.

Theorem 2.2 (Non-Abelian Hodge Theorem). Let X be a smooth complex projective variety. Up to stability condi-
tions, there is a cohomology preserving equivalence between

(i) flat bundles (F,∇) over X

(ii) Higgs bundles (F, φ) over X.

3 Where is the AG?

It turns out that the classical NAHT is a fundamentally smooth result—it is proven using analysis and then given to
us algebraically via GAGA. However, a weakened version does lend itself to algebraic approaches over more general
base rings. It turns out that the two objects featured in the NAHT fit into natural moduli spaces, and the NAHT
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provides an isomorphism between these spaces. As such, they have isomorphic cohomologies. One may thus seek a
“cohomological NAHT” over more general base rings, i.e. showing that the two natural moduli spaces occuring in
the NAHT have isomorphic cohomologies.

One approach is to consider a family of geometric objects living overX , smoothly varying in some parameter(s),
which interpolate between flat bundles and Higgs bundles. This is achieved via t-connections, originally suggested
by Deligne.

Definition 3.1. Let X/B be a smooth scheme. Given a vector bundle F on X , a t-connection (for t ∈ Γ(B,OB)) on
F is anOB-linear morphism

∇ : F → F ⊗ Ω1
X/B

of sheaves satisfying the t-twisted Leibniz rule

∇(fs) = ts⊗ df + f∇s

for all f ∈ OX and s ∈ F.

Given a t-connection∇ onF, wemay extend it tomorphismsF⊗Ωn
X/B → F⊗Ωn+1

X/B by enforcing the t-twisted
Leibniz rule

∇(s⊗ w) = ts⊗ dw + (∇s) ∧ w

locally. We call a t-connection∇ flat if∇ ◦∇ = 0.
With this definition, a Higgs field is simply a flat 0-connection and a flat connection is a flat 1-connection. This

gives a family of geometric objects overA1
B interpolating betweenHiggs bundles and flat bundles. Ifwe then consider

the moduli space MHodgeX of all bundles with t-connection on X , we get a morphism

MHodgeX → A1
B.

One approach to a cohomological NAHT is to prove that this morphism is smooth, as then we can then relate the
cohomologies of various fibres via “specialization maps” (which generically only exist in the proper setting, but are
constructed here in [DC22]).

4 The logarithmic setting

It turns out that it is best to consider connectionswith potential poles along a fixeddivisor. We consider the following
setup:

• B is a Noetherian scheme
• C/B is a smooth proper morphism of schemes with geometrically integral fibers of dimension 1
• D→ C is a relative Cartier divisor such that every geometric B-fiber of D is non-empty (this is important!)
and reduced

• n and d are coprime integers

We will write C/B as CB, and given a B-scheme S, we will write CS for the S-scheme C ×B S → S.
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Definition 4.1. Denote by MHodgess
CB → A1

B the moduli stack of (slope) semistable rank n and degree d t-
connections. As a semifunctor, this assigns to anA1

B-scheme S the groupoid of pairs (F,∇) where:

(i) F is a vector bundle of rank n on CS such that the restriction to each geometric fiber of CS → S has degree d
(ii) ∇ : F → F ⊗OCS

ωCS /S(DS) is a logarithmic tS -connection with at most simple poles allowed on the pullback
DS ofD
(iii) The restriction of the pair (F,∇) to each geometric fiber Cs of the morphism CS → S is a semistable ts-
connection.

We may also consider the moduli space

MHodgess
CB → A1

B (4.0.1)

of rank n and degree d semistable logarithmic t-connections over B constructed via Geometric Invariant Theory.
Our goal is to prove that (4.0.1) is smooth. To do this, we wish to reduce to proving the smoothness of

MHodgess
CB → A1

B.

To achieve this, we show that
MHodgess

CB → MHodgess
CB

is a smooth surjection via the following more general proposition.

Proposition 4.2. The naturalmapMHodgess
CB → MHodgess

CB is a smooth goodmoduli space morphism (in the sense
of [Alp13]).

Sketch of Idea. There is a central copyofGm in the automorphismsof everypoint ofMHodgess
CB sincemultiplication

by constants commutes with any logarithmic t-connection. We may thus universally remove these automorphisms
by taking a rigidification in the sense of [AOV08, Appendix A]. Call this stack (MHodgess

CB )rig. The rigidification
morphismMHodgess

CB → (MHodgess
CB )rig is a smooth good moduli space morphism.

Using the coprimality of n and d, which implies semistable t-connections are stable, one may then show that
(MHodgess

CB )rig is in fact an algebraic space. The universal property of rigification then induces a factoring

MHodgess
CB (MHodgess

CB )rig

MHodgess
CB

ψ

and one may show that, using properties of good moduli space morphisms and the fact that (MHodgess
CB )rig is an

algebraic space, that ψ is an isomorphism.

Since good moduli morphisms are surjective and smoothness may be checked smooth locally, Proposition 4.2
gives the following corollary.

Corollary 4.3. If the rank n and degree d are coprime,MHodgess
CB → A1

B is smooth if and only ifMHodgess
CB → A1

B

is smooth.
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We then have the following theorem.

Theorem 4.4. For general n and d (not necessarily coprime), the morphismMHodgess
CB → A1

B is smooth.

Sketch of Idea. We show smoothness by proving the existence of lifting for square-zero thickenings of local Artin
algebras.

To facilitate this, [dCHZ24] lays out a deformation theory of t-connections. In particular, for every morphism
xA : Spec(A) → MHodgess

CB they construct an obstruction module QxA in which the obstruction to a lifting

SpecA MHodgess
CB

Spec Ã A1
B

along a square-zero thickening SpecA → Spec Ã exists. Thus it suffices to show each obstruction module QxA is
zero, where A is a local Artinian algebra.

By a series of reductions, we may reduce to the case where B = Spec k, k algebraically closed, and xk : Spec k →
MHodgess

Ck is a geometric point.
Using semistable reduction arguments, this geometric pointmaybe extended to a family xA1

k
: A1

k → MHodgess
Ck

restricting to xk at 1 ∈ A1
k and compatible with the rescaling action on t-connections. If xp denotes the restriction

of xA1
k
to p ∈ A1

k, then by transporting the obstruction module along xA1
k
, it suffices to show that Qx0 = 0.

Since x0 represents a Higgs bundle, we are thus reduced to showing the vanishing of obstruction modules at
points representingHiggs bundles. This requires an explicit look at the obstructionmodule and in particular makes
explicit use of the fact that the divisorD→ C → B has non-empty fibers over every geometric B-point.
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