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Abstract

In this expository paper we discuss some basics of Lie algebra cohomology and how it can be used to
study the topology of a Lie algebra g’s integrating Lie group G.

1 Introduction

Given a Lie algebra g, Lie’s third theorem tells us that there is a unique simply connected Lie group G inte-
grating g. In light of this, one would expect that any properties ofG determined by its smooth isomorphism
class should be determinable from g alone. In particular, one should be able to compute the cohomology
ring H∗(G) of G using g. Pursuing this route gives a natural notion for the cohomology of a Lie algebra. In
this paper, we derive what this notion should be and talk briefly on its extensions and applications.

2 From De Rham to Chevalley-Eilenberg

To begin, let us consider a manifoldM with (left)G-action for some Lie groupG. We call a differential form
α invariant if g∗α = α for all g ∈ G, where by g∗ we mean pull-back along the diffeomorphism induced
by the action of g. As a consequence of pull-back commuting with d and exterior products, it follows that
invariant forms of M form a sub-dg-algebra of the de Rham complex (Ω•(M), d) which we will denote by
(Ω•

L(M), d). Provided that G is compact, averaging forms onM over their G-translates gives a way to relate
these two complexes. In particular,

Proposition 2.1. Assume that G is compact, connected and M is compact. Then the inclusion i : (Ω•
L(M), d) ↪→

(Ω•(M), d) induces an isomorphism on cohomology.

Proof. Let T : G×M → M be the actionmap. BecauseG is compact there exists aG-invariant Haar measure
dg on G integrating to one. Given a form α on M , define

ρ(α) =

∫
G

g∗α dg

to be a pointwise average of α over G. One checks that this defines a new form ρ(α) on M , and since dg is
G-invariant we have that ρ(α) ∈ Ω•

L(M). Moreover, if α ∈ Ω•
L(M), then as

∫
dg = 1 and g∗α = α for all g,

we have that ρ(α) = α.
Finally, since pull-back commutes with d, ρ gives a chain map ρ : (Ω•(M), d) → (Ω•

L(M), d) such that
ρ ◦ i = id. On the other hand, under the assumption that G is connected and M is compact, one may show
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that i◦ρ is chain homotopic to id (see [1, Chapter IV]). Taking induced maps on cohomology, we obtain the
desired result.

At this point, we specialize to the case ofM = GwithG acting on itself by left-multiplication. Since this
action is transitive, invariant forms on G are determined by their value at the identity and in fact a stronger
statement can be made:

Proposition 2.2. The map

Ωk
L(G)

∧k
g∗

α αe

sending left-invariant forms to their value at the identity is a bijection.

Carrying over the exterior derivative via this identification, we obtain an isomorphism (Ω•
L(G), d) ∼=

(
∧•

g∗, D) of dg-algebras. Provided we can identify the differential D under this correspondence, we will
then have succeeded in our goal of computing the cohomology ring of G from g alone, at least when G is
compact, connected.

Proposition 2.3. The differential D given by the exterior derivative under the isomorphism Ω•
L(G) ∼=

∧•
g∗ is the

dual of the Lie bracket, i.e. D = [·, ·]∗ : g∗ → g∗ ∧ g∗.

Proof. Since (
∧•

g∗, D) is a dg-algebra, it suffices to determine D : g∗ → g∗ ∧ g∗. For this, given v ∈ g∗

let αv denote the corresponding left-invariant 1-form and given w ∈ g let lw denote the corresponding left-
invariant vector field.

Given v ∈ g∗ and w ∈ g, we have that ιlw(αv) is alsoG-invariant, hence constant. Thus by Cartan’s magic
formula we have that

ιlwdαv = Llwαv − dιlwαv

= Llwαv.
(2.0.1)

But Φt = Rexp(tw), where Rg denotes right-multiplication by g, is the flow of lw. Thus

(Llwαv)e(u) =
d

dt

∣∣∣
t=0

(R∗
exp(tw)αv)e(u)

=
d

dt

∣∣∣
t=0

v(C∗
exp(tw)u)

= v([w, u]).

It follows from (2.0.1) that
(ιlwdαv)e(u) = (dαv)e(w, u)

= v([w, u])

which is what we wanted to prove.

Having identifying the Lie algebra side of the picture, the resulting dg-algebra (
∧•

g∗, D) deserves a
name.

Definition 2.4. Given a Lie algebra (g, [·, ·]) over k, the Chevalley-Eilenberg algebra of g, denoted CE(g), is
given by CE(g) = (

∧•
k g

∗, d)where d is the dual of the Lie bracket.
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Remark 2.5. This construction is functorial, and the fact that the differential d in CE(g) squares to zero is
precisely the condition that [·, ·] satisfies the Jacobi identity. As a consequence, we get a fully faithful functor
CE : LieAlgk → dgAlgopk whose essential image is precisely those algebras whose underlying complex is
the exterior algebra of some vector space. This gives an alternative definition of a Lie algebra. Moreover,
because this functor is fully faithful, CE(g) depends only on the isomorphism class of g.

We can then conclude with the following theorem which is an immediate corollary of the work above.

Theorem 2.6. If G is a compact, connected Lie group, then the cohomology ring H∗(G,R) depends only on its
associated Lie algebra and we have that H∗(G,R) ∼= H∗(CE(g)).

Remark 2.7. Since g determines G only when G is simply-connected, the condition that G be connected
should not come as a surprise. This in mind, the only constraint we have truly imposed is thatG be compact
and in fact we have shown something non-trivial: If G is compact, connected then the cohomology ring of
G is determined by g, despite g not-necessarily determining G itself.

3 Extensions and Applications

More generally, given a g-module M , one may consider G-invariant forms on G valued in M . Continuing
a similar line of argumentation to that above, one arrives at the notion of Lie algebra cohomology with
coefficients inM and the above consideration becomes the special case of M = R, the trivial g-module.

More algebraically, through some work, one can see that the Chevalley-Eilenberg complex constructed
above is simply givingus a resolution to compute the right derived functors of the left-exact functorHomUg(R,−)

where R is the trivial module. Thus one may also make the following definition.

Definition 3.1. Given a Lie algebra g over R and a g-moduleM , the cohomology of gwith coefficients inM

is defined to be H∗(g;M) = Ext∗Ug(R,M).

This approach lends itself to manipulations using the full power of homological algebra, though from
its definition is less geometrically motivated. One famous result that this line of research leads to is Weyl’s
theorem which we state but whose proof is outside the scope of this paper.

Theorem3.2 (Weyl). Let g be a semisimple Lie algebra over a field of characteristic zero. Then every finite dimensional
g-module is semisimple.
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