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1 Introduction

The non-abelian Hodge correspondence relates flat bundles over a compact Kähler manifold to
holomorphic objects known as Higgs bundles. The goal of this paper is to give an exposition
of non-abelian Hodge correspondence as it generalizes the classical Hodge decomposition. One
may view non-abelian Hodge theory as one of many results sitting in a web of categorifications
of classical statements in topology, differential geometry and algebraic geometry.

To the see the start of this story, recall a classical theorem of de Rham which tells us that for
a smooth manifold X ,

Hk(X,C) ∼= Hk
dR(X)⊗ C.

This relates the cohomology of the local system C on X to the cohomology of the complex

A0
C(X) A1

C(X) A2
C(X) · · ·d d d

associated to the trivial line bundle A0
C(X) with flat connection d. However, this is just one

instance of a more general correspondence. There exists a well-known equivalence of categories

{
C-local systems over X

} {
C-vector bundles with
flat connection over X

}
∼ (1.0.1)

which preserves the natural notion of cohomology in both categories. Indeed, given a flat bundle
(E,∇)we may consider the hypercohomology of the complex

A0(E) A1(E) A2(E) · · · .∇ ∇ ∇ (1.0.2)

These sheaves are fine, hence acyclic, and by standard ODE theory (1.0.2) gives a resolution
of ker(∇ : A0(E) → A1(E)). In particular, if one defines the cohomology of (E,∇) to be the
hypercohomology of (1.0.2) and the cohomology of the local system H to beH•(X,H), then the
equivalence (1.0.1) preserves these notions. Thus, asC corresponds to (A0

C(X), d) under (1.0.1),
(1.0.1) may viewed as a categorification of the de Rham isomorphism.

Alongside the de Rham isomorphism, we also have the classical Hodge decomposition. IfX
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is a compact Kähler manifold, we may write

Hk(X,C) ∼=
⊕

p+q=k

Hq(X,Ωp
X) = Hk(X,

⊕
i

Ωi
X [i]).

This relates the cohomology of the trivial local system C to that of a complex

OX Ω1
X Ω2

X · · · .0 0 0

This complex is reminiscent to the de Rham complex, except now we’ve replaced the trivial
complex line bundle with the trivial holomorphic line bundle OX , and the flat connection d

with 0. Thus we may be hopeful that the classical Hodge decomposition, just as the de Rham
isomorphism, arises as a special case of a broader equivalence of objects. In particular, one may
hope for a chain of equivalences

{
C-local systems over X

} {
C-vector bundles with
flat connection overX

} {
holomorphic vector bundles +

some extra data over X

}
∼ ∼

(1.0.3)
which is “cohomology preserving” and recovers the de Rham isomorphism and Hodge decom-
position when applied to the simplest case of trivial line bundles and local system:

C (A0
C(X), d) (OX , 0).

The first work suggesting such an equivalence is due to Narasimhan and Seshadri [10]. For a
compact Riemann surfaceX , they established an equivalence between unitary representations of
π1(X) and stable holomorphic vector bundles overX . In a series of generalizations due to Don-
aldson [5, 6] and Uhlenbeck and Yau [14], this equivalence was extended to Kähler manifolds
of arbitrary dimension. Passing through the Riemann-Hilbert correspondence, which gives an
equivalence between flat connections onX and C-representations of π1(X), these results repre-
sent a special case of the desired equivalence (1.0.3).

To achieve a more general correspondence, more than just holomorphic vector bundles E are
required. The extra data one needs is that of a Higgs field: a holomorphic End(E)-valued 1-form
ϕ ∈ H0(X, End(E)⊗Ω1

X)which commutes with itself, i.e. ϕ∧ϕ = 0. Such a pair (E , ϕ) is referred
to as a Higgs bundle, and comes with a natural associated complex

E E ⊗ Ω1
X E ⊗ Ω2

X · · ·ϕ ϕ ϕ

which is a complex by the condition that ϕ ∧ ϕ = 0. The hypercohomology of this gives a
natural notion of cohomology for (E , ϕ). The non-AbelianHodge theoremgives us a cohomology
preserving correspondence between flat bundles on X and Higgs bundles over X , both subject
to certain stability conditions.

Under this correspondence, (A0
C(X), d) corresponds to (OX , 0) and taking cohomology re-
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Figure 1: Diagram of equivalent categories forX compact Kähler. Dashed arrow denotes equiv-
alence between full subcategories.

covers the classical Hodge decomposition. In this way the non-Abelian Hodge theorem gives a
categorification of the Hodge decomposition. This correspondence is the cumulative result of
a long series of generalizations, with the final form being primarily due to Simpson [12] and
Corlette [3]. There exist many good introductory resources on this topic [2, 7, 13]. The goal of
this paper is to present abelian and non-abelian Hodge theory together in a way that illuminates
how the latter is a generalization of the former.

Outline: The outline of this paper is as follows.
Preliminaries (Sections 2-3): Section 2 covers various categorical preliminaries, particularly hy-
percohomology and can be skipped by readers already comfortable with this concept. Section
3 covers differentials and connections. These notions are introduced in atypical generality (fol-
lowing [7]) to encompass many related ideas and alleviate definitional burden throughout the
rest of the paper.
Abelian Hodge theory (Section 4): Section 4 covers abelian Hodge theory. This refers to the clas-
sical statement of Hodge decomposition. The content of this section is thus very similar to a
traditional proof of the Hodge decomposition, but is approached in sufficient generality so as to
later give us preservation of cohomology in the non-abelian Hodge correspondence.
Non-Abelian Hodge correspondence (Section 5): Section 5 gives the statements of the non-abelian
Hodge theoremwith a sketch of its proof. Combinedwith the previous section on abelianHodge
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theory we complete the categorification promised in the introduction.

2 Categorical preliminaries

2.1 Hypercohomology

For this section, we will assume that the reader has already met sheaf cohomology. A good
reference for sheaf cohomology and the contents of this section are [15, §4] and [15, §8.1] re-
spectively.

Recall that one defines sheaf cohomology

Hi(X,F) := RiΓ(F)

as the right-derived functor of the global sections functor Γ. To compute this, one takes an in-
jective resolution F → I• and sets RiΓ(F) = Hi(Γ(I•)). The goal of hypercohomology is to
generalize right-derived functorRiΓ to take values on left-bounded complexes M• of sheaves, i.e.
complexes of sheaves with Mn = 0 for n sufficiently negative, rather than just sheaves F which
we may view as a left-bounded complex supported in degree 0.

Let A and B be abelian categories in which A has enough injectives1 and let F : A → B be a
left-exact functor.

Definition 2.1. LetA• andB• be complexes in an abelian category. A quasi-isomorphism f : A• →
B• is a chain map such that Hi(f) : Hi(A•) → Hi(B•) is an isomorphism for all i.

Provided that A has enough injectives, any left-bounded complexM• is quasi-isomorphic to
a complex of injective objects of A, and such a choice is essentially unique.

Lemma 2.2. Let M• be a left-bounded complex in A. Then there exists a complex I• with each In

injective and a quasi-isomorphism f : M• → I•. Moreover, given another such choice g : M• → J•,
there exists a morphism ϕ : I• → J• which is unique up to homotopy with ϕ ◦ f = g.

Proof. See [15, Proposition 8.4] and [15, Lemma 8.7].

This allows us to extend the definition of RiF to left-bounded complexes by setting

RiF (M•) := Hi(F (I•))

where I• is any complex of injective objects quasi-isomorphic toM•, as guaranteed by Lemma
2.2. Of course, this depends on our choice of I•. However, if one is also willing to remember the
choice of quasi-isomorphism f :M• → I•, then we have

Proposition 2.3. RiF (M•) is well-defined up to canonical isomorphism.
1This is a technical condition that applies to all categories we will consider. This means that for all A ∈ Ob(A) we

may find a monomorphism A → I with I an injective object of A.
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Proof. Let g : M• → J• be another choice of quasi-isomorphism with a complex of injectives.
Then Lemma 2.2 gives a morphism ϕ : I• → J• with ϕ ◦ f = g and similarly a ψ : J• → I•

with ψ ◦ g = f . By uniqueness, we must have ϕ ◦ ψ ≃ idJ• and ψ ◦ ϕ ≃ idI• and thus ϕ and
ψ are homotopy equivalences. Hence F (ϕ) is also a homotopy equivalence, and thus a quasi-
isomorphism.

Moreover, as ϕ is unique up to homotopy, so is F (ϕ). ThusHi(F (ϕ)) is independent of ϕ and
gives a canonical isomorphism Hi(F (ϕ)) : Hi(F (I•)) → Hi(F (J•)).

In the special case of F = Γ and A the category of sheaves overX with values in B, where B
has enough injectives, one typically writes

RiΓ(M•) =: Hi(X,M•)

and refers to Hi(X,M•) as the hypercohomology of M•.
Example 2.4. Let F be a sheaf and F → K• an injective resolution. Then, by definition, one has
Hi(X,F) = Hi(X,K•). Moreover, if one views F as a complex supported in degree zero, then
one also hasHi(X,F) = Hi(X,F). It is in this sense that hypercohomology generalizes regular
sheaf cohomology.

Just as in sheaf cohomology, RiF (−) is functorial. That is, given α : M• → N•, we get
a morphism RiF (α) : RiF (M•) → RiF (N•) and when each Nk is acyclic for the functor F ,
RiF (α) becomes an isomorphism. This allows one to compute hypercohomology using acyclic
complexes, which we will use later.

Wewill also need a slightly technical propositionwhich allows computing hypercohomology
from double complexes, which we state now.

Proposition 2.5. Let (A•, D) be the simple complex associated to the double complex (A•,•, D1, D2).
Suppose also that we have a morphism i :M• → (A•,0, D1) with each ip injective such that eachMp ip−→
(Ap,•, D2) is a resolution ofMp. Then the composite

M• → (A•,0, D1) → (A•, D)

is a quasi-isomorphism.

Proof. See [15, Lemma 8.5].

3 Differentials and connections

This section introduces differentials and connections in the manner of [7, §2]. Let (X,O) be a
locally ringed space with O a sheaf of C-algebras.
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3.1 Differentials

Definition 3.1. Let K be a locally free sheaf of O-modules over X. A differential d on K is a
collection of C-linear maps d(n) : ∧n

O K →
∧n+1

O K such that

(i) for all v ∈
∧n1

O K, w ∈
∧n2

O K

d(n1+n2)(v ∧ w) = d(n1)(v) ∧ w + (−1)n2v ∧ d(n2)(w)

(ii) for all n, d(n+1) ◦ d(n) = 0

That is, d =
⊕

n d
(n) :

∧•
O K →

∧•
O K is a degree 1 C-linear derivation which squares to zero.

Remark 3.2. As slight abuse of notation, when we write v ∈
∧n

O K or v ∈ F for any other sheaf
F , we mean that v ∈ F(U) is a section of F over some open U ⊆ X .

Every differential d on K then gives an associated complex

O K
∧2

O K
∧3

O K · · · .d d d d (3.1.1)

Example 3.3. Given a smoothmanifoldM , wemay take (X,O) = (M,A0
C(M)). Then the complex

extension of the exterior derivative d gives a differential on A1
C(M), the sheaf of complex 1-forms

onM . The associated complex to d is the (complex) de Rham complex ofM , the hypercohomology
of which computes the complexified de Rham cohomology H•

dR(M,C) = H•
dR(M)⊗ C.

Example 3.4. Given a complexmanifoldX , wemay take (X,O) = (X,A0
C(X)). Then the operator

∂ gives a differential on A0,1(X)whose associated complex

A0,0(X) A0,1(X) A0,2(X) · · ·∂ ∂ ∂

is called the Dolbeault complex of X , and has hypercohomology which computes the Dolbeault
cohomology of X .
Example 3.5. Let X be a complex manifold and OX the sheaf of holomorphic functions on X .
More generally, we may consider

Ωp
X = ker(∂ : Ap,0(X) → Ap+1,0(X)),

the sheaf of holomorphic p-forms. Then the exterior derivative d = ∂ + ∂ sends holomorphic
p-forms to holomorphic (p + 1)-forms, so it gives a differential on Ω1

X with respect to the pair
(X,O) = (X,OX). To emphasize that the underlying locally ringed space is (X,OX) rather
than (X,A0

C(X)) or (X,A1,0(X)), we will try to write dh for the restriction of d to holomorphic
p-forms. Note that dh = d = ∂ all agree on holomorphic p-forms. The associated complex

OX Ω1
X Ω2

X Ω3
X · · ·dh dh dh dh
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is called the holomorphic de Rham complex of X , and its hypercohomology also computes the
complex de Rham cohomology of X .

3.2 λ-D-connections

Given a differential d on K, we may then define connections relative to d. Just as in the classical
case of d the exterior derivative, connections on a vector bundle V should take sections of V to
V-valued forms, and in this setting K replaces our sheaf of 1-forms.

Definition 3.6. Let V be a locally free sheaf of O-modules overX , and d a differential on K. Then
a λ-d-connection, λ ∈ C, on V is a C-linear map∇ : V → V ⊗O K satisfying the λ-twisted Liebniz
rule

∇(fs) = λs⊗ d(f) + f∇(s)

for all f ∈ O and s ∈ V .

Given a λ-d-connection ∇, we may extend it to a collection of maps ∇(n) : V ⊗O
∧n

O K →
V ⊗O

∧n+1
O K by setting

∇(n)(s⊗ w) = λs⊗ d(w) +∇(s) ∧ w

for s ∈ V and w ∈
∧n

O K.
One then has

(∇(1) ◦ ∇(0))(fs) = ∇(1)(λs⊗ df + f∇s)

= λ2s⊗ d2f + λ∇s ∧ df − λ∇s ∧ df + f(∇(1) ◦ ∇(0))(s)

= f(∇(1) ◦ ∇(0))(s).

Thus ∇(1) ◦ ∇(0) is O-linear and under the identifications

HomO(V ,V ⊗O
∧2

OK) = HomO(O, End(V)⊗O
∧2

OK)

= Γ(X, End(V)⊗O
∧2

OK)

we may view ∇(1) ◦ ∇(0) ∈ Γ(X, End(V)⊗O
∧2

OK).

Definition 3.7. The curvature of ∇ is defined to be ∇(1) ◦ ∇(0) ∈ Γ(X, End(V) ⊗O
∧2

OK), which
we may abbreviate as ∇ ◦∇. We say that ∇ is flat or a flat connection if∇ ◦∇ = 0.

Given a flat connection ∇, we also have an associated complex

V V ⊗O K V ⊗O
∧2

O K V ⊗O
∧3

O K · · ·∇ ∇ ∇ ∇ (3.2.1)

The hypercohomology of this complex provides a natural notion for what the cohomology of
the flat bundle (V ,∇) ought to mean. Note also that any differential d on K is itself a flat 1-d-
connection on K, and the associated complex (3.1.1) is the same as (3.2.1).
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Example 3.8 (Holomorphic vector bundles). Algebraically, onemay define a holomorphic vector
bundle over a complex manifoldX as a locally free sheaf of OX -modules, where OX is the sheaf
of holomorphic functions onX . Translating this into differential geometric terms, a holomorphic
vector bundle over X is a smooth complex vector bundle over X with a distinguished cover of
trivializations whose transition functions are holomorphic.

Given such a vector bundle E → X with sheaf of smooth sections E we may define an oper-
ator ∂E : E → E ⊗ A0,1(X) locally under a distinguished trivialization

E|U ∼= U × Cn

by
∂E(f1, . . . , fn) = (∂f1, . . . , ∂fn). (3.2.2)

Because E has holomorphic transition functions, this definition is well defined, and one checks
that

∂E(fs) = s⊗ ∂f + f∂Es,

so ∂E is a 1-∂-connection on E. Moreover, using the local form (3.2.2), one sees that ∂2E =

0, so ∂E is a flat connection. The holomorphic sections of E are then precisely those sections
annihilated by ∂E .

Conversely, given a smooth complex vector bundle E with flat 1-∂-connection ∂E , it is a the-
orem of Koszul-Malgrange [9] that wemay find trivializations ofE with holomorphic transition
functions such that the construction above reproduces ∂E . In light of this, holomorphic vector
bundles over X may be viewed in three equivalent ways

(i) A locally free sheaf of OX -modules E

(ii) A smooth complex vector bundle E → X with a distinguished collection of trivializations
covering X with holomorphic transition functions
(iii) A smooth complex vector bundle E → X with flat 1-∂-connection ∂E .

We will freely switch between these equivalent definitions throughout the essay.
Now, vector bundles with λ-d-connections may be turned into a category Connλ and given

a λ-d-connection ∇, µ∇ becomes a µλ-d-connection. This C×-action shows that for all λ ̸= 0,
Connλ is equivalent to Conn1. Thus the case λ = 0 immediately distinguishes itself and in the
holomorphic setting, vector bundles with 0-dh-connections are what we call Higgs bundles.
Example 3.9 (Higgs bundles). LetX be a complex manifold. Then a holomorphic vector bundle
E with 0-dh-connection ϕ is referred to as a Higgs bundle, written together as (E , ϕ). Here ϕ is
referred to as the Higgs field.

In the λ = 0 case, the 0-dh-connection ϕ is OX -linear, so wemay also view ϕ ∈ Γ(X, End(E)⊗
Ω1

X). In this case, we often write the flatness condition as ϕ ∧ ϕ = 0 and it may be viewed as a
self-commutivity condition. Indeed, if one locally writes, after trivializing E and taking complex

9



coordinates z1, . . . , zn for X ,
ϕ =

∑
i

Aidzi

then ϕ ∧ ϕ = 0 says exactly that the Ai are pairwise commuting.
We can also give a description of Higgs bundles in the smooth setting. In this case we require

a triple (E, ∂E , θ)where ∂E is a flat 1-∂-connection and θ is a flat 0-∂-connection such that

∂Eθ + θ∂E = 0. (3.2.3)

In this case, by the discussion in Example 3.8, (E, ∂E) gives us our holomorphic bundle E . More-
over, the anti-commutivity constraint (3.2.3) tells us that θ descends to a flat 0-dh-connection on
E , giving the Higgs field. In this case we will sometimes also write (E,D) for the Higgs bundle
where D = ∂E + θ.

4 Abelian Hodge theory

4.1 A motivating limiting case

We begin this section with an observation that naturally leads one to conjecture the classical
Hodge decomposition.

LetX be a complexmanifold. Thenwe have a natural family of differentials t·dh, t ∈ C, on the
pair (OX ,Ω

1
X). This gives a family of flat t-dh-connections∇t = t ·dh on the trivial holomorphic

bundle OX . One might then ask, how does the cohomology of these flat bundles vary in this
family? Intuitively, one might expect behavior to split into the two cases of t = 0 and t ∈ C∗.
This is indeed the case as the following propositions show.
Proposition 4.1. For t ∈ C∗, we have that Hk(X, (Ω•

X , t · dh)) = Hk(X,C).

Proof. We have a quasi-isomorphism (Ω•
X , t · dh) → (Ω•

X , dh) given by

0 OX Ω1
X Ω2

X Ω3
X · · ·

0 OX Ω1
X Ω2

X Ω3
X · · ·

t·dh

×1

t·dh

×t−1

t·dh

×t−2 ×t−3

dh dh dh

.

Thus it suffices to show this for the case t = 1, i.e. show that the hypercohomology of the holo-
morphic de Rham complex computes the cohomology of the de Rham complex.

For this, we have an inclusion (Ω•
X , dh) ↪→ (A•,0

C , ∂). Moreover, for each fixed p, we have that
Ωp

X ↪→ (Ap,•
C , ∂) is a resolution of Ωp

X . Thus by Proposition 2.5 we have that (Ω•
X , dh) is quasi-

isomorphic to the simple complex (A•
C(X), d) associated to the double complex (A•,•

C , ∂, ∂) and
the result follows.

On the other hand, when t = 0, we have:
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Proposition 4.2. We have that Hk(X, (Ω•
X , 0)) =

⊕
p+q=kH

q(X,Ωp
X).

Proof. Indeed, as complexes, we have that

(Ω•
X , 0) =

⊕
p

Ωp
X [p]

where Ωp
X [p] denotes the complex with single non-zero term Ωp

X supported in degree p. Thus

Hk(X, (Ω•
X , 0))

∼=
⊕
p

Hk(X,Ωp
X [p])

=
⊕
p

Hk−p(X,Ωp
X)

=
⊕

p+q=k

Hq(X,Ωp
X)

as required.

This of course begs the question: Given a holomorphic bundle E over X with a family ∇t of
flat t-dh-connections for t in a neighborhood of 0 ∈ C, when is the cohomology preserved in the
limit t → 0? The above shows that for the family (OX , t · dh), this question is equivalent to a
canonical decomposition

Hk(X,C) ∼=
⊕

p+q=k

Hq(X,Ωp
X).

It turns out that in answering this question, it is beneficial to fix an underlying complex smooth
vector bundle E, and let the holomorphic structure E on E vary in t as well. Abelian Hodge
theory will then seek to answer this question in the case of Kähler manifolds for families (Et,∇t)

on E of holomorphic structures with flat t-dh-connections when our holomorphic structures Et

and connections ∇t deform in t in a manner governed by the Kähler metric h.
Later, we will see that the non-abelian Hodge correspondence identifies exactly which pairs

of holomorphic bundles (E1,∇1) with flat 1-dh-connections and Higgs bundles (E0,∇0) can be
related by a family (Et,∇t) for which the results of abelian Hodge theory applies. Combining
these two, the non-abelian Hodge correspondence will give us an equivalence between full sub-
categories of the category of flat bundles and the category of Higgs bundles, and the abelian
Hodge theorem will show this is cohomology preserving.

4.2 The Hodge Theorem for elliptic complexes

4.2.1 L2-inner product and Hodge ∗-operator

Many of the technical tools that go into proving the abelian Hodge theorem involve functional
analysis, and to create a settingwhere these techniques apply, we need to topologize the sections
of vector bundles over our manifold using an inner product.

11



LetM be a smooth manifold with volume form vol. Given a Hermitian vector bundle (E, h)
overM , we may turn the global sections A0(E) an inner product space as follows.

Definition 4.3. The L2-inner product on A0(E) is given by

⟨α, β⟩L2 =

∫
M

⟨α, β⟩hvol (4.2.1)

where at least one of α, β is compactly supported so that the integral is defined. When M is
compact, this turns A0(E) into an inner product space.

When multiple Hermitian bundles are present, we will sometimes write ⟨ , ⟩E for the L2-
inner product on E to emphasize the which inner product is being used.

Remark 4.4. When M is compact, the assumption that one of α, β be compactly supported is
vacuous. While the results we care about will assume M is compact, the proofs will reference
the L2-inner product on open subsets U ⊆M , hence the need for the more general definition.

While this definition alone covers all the cases that we need, it is often the case that we want
to consider E-valued k-forms, i.e. global sections of Ωk

M,R ⊗R E. While it is certainly possible
to independently equip these with Hermitian metrics for each k, the more common scenario is
to consider the case when (M, g) is a Riemannian manifold and E is Hermitian, in which case
Ωk

M,R ⊗R E comes with an induced Hermitian metric.
To illustrate this scenario, assume that (M, g) is an oriented Riemannian manifold. In this

case,M has a canonical volume form volg given locally by

ω1 ∧ ω2 ∧ · · · ∧ ωn

where ω1, . . . , ωn is an oriented orthonormal coframe. Moreover, the metric g on TM induces
Riemannian metrics on Ωk

M,R for all k. Indeed, the metric on Ω1
M,R = T ∗M is such that for each

x ∈M and orthonormal basis v1, . . . , vn of TxM , the dual basis v∗1 , . . . , v∗n ∈ T ∗
xM is an orthonor-

mal basis for T ∗
xM . Then, for Ωk

M,R =
∧k

R T
∗M we assert that in each fibre, if w1, . . . , wn ∈ T ∗

xM

is an orthonormal basis, then {wi1 ∧· · ·∧wik : i1 < · · · < ik} is an orthonormal basis for (Ωk
M,R)x.

Now, if (E, h) is a Hermitian vector bundle over M , then Ωk
M,R ⊗R E has a natural Hermitian

metric given by tensorial extension, i.e. in each fibre we define

⟨ω1 ⊗ e1, ω2 ⊗ e2⟩ = ⟨ω1, ω2⟩g⟨e1, e2⟩h.

For this reason, when (M, g) is an oriented Riemannian manifold and (E, h) is a Hermitian
vector bundle overM , the L2-inner product on Ak(E) will, unless otherwise stated, mean that
we take M to have volume form volg and Ωk

M,R ⊗R E to have the induced Hermitian metric
described above.

Moreover, in this special case, one is able to formulate ⟨ , ⟩L2 in terms of the Hodge ∗-

12



operator. Let dimRM = n. For every x ∈M we have a non-degenerate pairing

Ωk
M,R,x × Ωn−k

M,R,x Ωn
M,R,x R

(ω1, ω2) ω1 ∧ ω2 ⟨ω1 ∧ ω2, volg⟩g

∼=

which induces an isomorphism

Ωn−k
M,R,x

∼= Hom(Ωk
M,R,x,R).

On the other hand, the extension of g to Ωk
M,R also induces an isomorphism

Ωk
M,R,x

∼= Hom(Ωk
M,R,x,R).

Composing these two isomorphisms gives the Hodge ∗-operator

∗x : Ωk
M,R,x

∼=−→ Ωn−k
M,R,x

at the point x. This definition varies smoothly in x and gives a bundle isomorphism

∗ : Ωk
M,R

∼=−→ Ωn−k
M,R. (4.2.2)

To extend theHodge ∗-operator toworkwithE-valued forms, note that theHermitianmetric
h on E induces an isomorphism

E
∼=−→ E∨.

Tensoring this with (4.2.2) gives the Hodge ∗-operator

∗E : Ωk
X,R ⊗R E

∼=−→ Ωn−k
M,R ⊗R E

∨

for which we also write ∗E for the induced map on sections, i.e. on E-valued forms.
The definition of ∗E gives that for α, β ∈ Ak(E),

(α ∧ ∗Eβ)(x) = ⟨α, β⟩Ωk
M,R⊗RE(x)volg(x)

where on the left-hand side ∧ denotes exterior product on the form components and contraction
of the E and E∨ components. Thus we find that

⟨α, β⟩L2 =

∫
M

α ∧ ∗Eβ. (4.2.3)

13



4.2.2 Elliptic operators and orthogonal decomposition

In this subsection we introduce some of the tools from functional analysis that go into the proof
of the Hodge decomposition. Seeing as this is distinct from the rest of the essay, we will take the
essential results of this section as given.

The setting for this section again will be the real smooth category, as none of the results here
require any complex structures on our manifold.

Definition 4.5. Let M be a smooth manifold with complex vector bundles E, F . A C-linear
morphism L : A0(E) → A0(F ) is called a differential operator of order k if for every x ∈ M we
may find an open neighborhood x ∈ U on whichM has coordinates x1, . . . , xn andE|U , F |U are
trivial and under the identifications

E|U ∼= U × Cp, F |U ∼= U × Cq, (4.2.4)

we have that
L(U) : A0

C(M)p A0
C(M)q

(α1, . . . , αp) (β1, . . . , βq)

is given by
βi =

∑
j,|I|≤k

LI
ij

∂αj

∂xI
(4.2.5)

with each LI
ij ∈ A0

C(M)(U) and some LI
ij ̸= 0 for |I| = k.

In other words, L is locally given by a linear partial differential operator of order k. One may
check that ifL is a differential operator of order k, then the above holds on every open coordinate
chart U of M on which E, F are trivial. Note that here when we say that L is C-linear, we are
using the complex vector bundle structures of E and F to give A0(E) and A0(F ) the structure
of C-modules by fibre-wise operations on sections.

For the sake of computation, we will want a coordinate-free description of differential oper-
ators, which we quote.

Fact 4.6. A C-linear morphism L : A0(E) → A0(F ) is

(i) a differential operator of order 0 if and only if for every f ∈ A0
C(M) we have that the commutator of

L and multiplication by f is zero, i.e. [L, f ] = 0

(ii) a differential operator of order k if and only if for every f ∈ A0
C(M) we have that the commutator

[L, f ] is a differential operator of order k − 1

Example 4.7. Differential operators of order k on the trivial bundle C × Rn → Rn are precisely
linear partial differential operators of order k.
Example 4.8. The exterior derivative d : Ak

C(M) → Ak+1
C (M) between sections of the complex

vector bundlesΩk
M,R⊗RC andΩk+1

M,R⊗RC is a differential operator of order 1. Indeed, in the case

14



k = 0, on a coordinate chart U ofM with coordinates x1, . . . , xn we have that with respect to the
trivializing sections 1 and dx1, . . . ,dxn, d is given by

f 7−→
( ∂f
∂x1

, . . . ,
∂f

∂xn

)
.

Alternatively, using Fact 4.6, one may check that

[d, f ]ω = d(fω)− fdω = df ∧ ω

so [d, f ] = df ∧ (−)which is a differential operator of order 0. Hence d is a differential operator
of order 1.

Now, although the defining property of a differential operator is independent of the choice
of open cover on which it is checked, the exact LI

ij occurring in (4.2.5) do not transform in any
particularly nice way as we change between trivializing opens. Indeed, changing coordinates
for ∂/∂xI will introduce difficult to control linear combinations of ∂/∂xJ for |J | < |I|. This
motivates us to look only at the top degree terms and for every open U as in Definition 4.5
consider the matrix (Lij)ij where

Lij :=
∑
|I|=k

LI
ij

∂

∂xI
∈ Γ(U, SkTM)

is a local section over U of the k-th symmetric power of TM given by viewing

∂

∂xI
=

∂

∂xi1
· · · · · ∂

∂xik
∈ Γ(U, SkTM)

where I = (i1 < · · · < ik).
Assembling the Lij into a matrix, we get a section of HomC(Cp,Cq)⊗R S

kTM over U , which
after reapplying the isomorphisms (4.2.4) gives us

(Lij)ij ∈ Γ(U,HomC(E,F )⊗R S
kTM).

A quick exercise shows that these local definitions transform as required to patch together and
give a global section

σ̃k(L) ∈ Γ(M,HomC(E,F )⊗R S
kTM). (4.2.6)

Now, let π : T ∗M →M be the cotangent bundle. Then we get a section

π∗σ̃k(L) ∈ Γ(M,HomC(π
∗E, π∗F )⊗R S

kπ∗TM) (4.2.7)
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by pulling back. There is a canonical bundle morphism

π∗TM R

(ξ, v) (π(ξ), ξ(v))

given by contraction of the base-point ξ ∈ T ∗
π(ξ)M with the vector v ∈ Tπ(ξ)M . Applying the

k-th symmetric power Sk and considering the product map SkR → R we get a composite

Skπ∗TM SkR R

(x, ξ1 · · · · · ξk) (x, ξ1 · · · ξk).

Applying this to the factor of Skπ∗TM in (4.2.7) we finally get a section

ψL ∈ Γ(M,HomC(π
∗E, π∗F )⊗R R) = Γ(M,HomC(π

∗E, π∗F )).

Definition 4.9. The section σk(L) := ikψL of HomC(π
∗E, π∗F ) called the symbol of L.

Remark 4.10. Sometimes (4.2.6) is taken as the definition of the symbol of L. Moreover, some
definitions exclude the factor of ik, however this normalization will be useful later in making
Proposition 4.14(i) hold without additional signs. More concretely, the symbol σk(L) of L on an
open U as in Definition 4.5 is given by the matrix (Aij)ij where

Aij(x,
∑
ℓ

ξℓ · dxℓ) = ik
∑
|I|=k

LI
ij(x)ξI

and ξI =
∏

r ξir if I = (i1 < · · · < ir).
Again there is a coordinate-free description of the symbol of L which will sometimes be

useful for computations, which we quote.

Fact 4.11. Given L : A0(E) → A0(F ) a differential operator of order k, then for x ∈ M , s ∈ Γ(M,E)

and f ∈ C∞(M,R) with f(x) = 0 we have that

σk(L)(x, (df)x)(s(x)) =
ik

k!
L(fk · s)(x).

Example 4.12. Returning to Example 4.8, we use Fact 4.11 to compute the symbol of d. We have
that for a k-form ω,

σ1(d)(x, (df)x)(ωx) = i · d(f · ω)x = i(df ∧ ω)x

using that f(x) = 0. Thus σ1(d)(x, ξ)(ω) = iξ ∧ ω.
The symbol of a differential operator will be useful later as an object encoding just enough

information about L to get strong yet general results by constraining its behaviour.
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Differential operators are useful as they have formal adjoints with respect to the L2-inner
product.

Proposition 4.13. Let (M, vol) be a smooth manifold with volume form and E,F Hermitian vector
bundles over M so that the L2-inner product is defined. Let L : A0(E) → A0(F ) be a differential
operator of order k. Then there exists a unique formal L2-adjoint L∗ : A0(F ) → A0(E) in the sense that,
for every U ⊆M open and α ∈ A0(E)(U), β ∈ A0(F )(U) with α compactly supported, we have

⟨L(U)(α), β⟩L2 = ⟨α,L∗(U)(β)⟩L2 .

Moreover, L∗ is a differential operator of order k.

Proof. We sketch a proof, see [16, Chapter IV] for more details.
First, if an adjoint exists then it is unique. Indeed, letQ1,Q2 be two adjoints to L. Then, over

any open U ⊆M , we have that for sections α ∈ A0(E)(U), β ∈ A0(F )(U) that

⟨α, (Q1(U)−Q2(U))β⟩ = ⟨α,Q1(U)β⟩ − ⟨α,Q2(U)β⟩

= ⟨L(U)α, β⟩ − ⟨L(U)α, β⟩

= 0.

Since this holds for all α, β with α compactly supported, using bump functions we find that
Q1(U) = Q2(U).

Given uniqueness, we then reduce existence to a local statement by gluing. For this, we may
assume that E, F are trivial with the standard metric andM ∼= Rn, and that L takes the form in
(4.2.5). Moreover, by Moser’s theorem, transformingM by a diffeomorphism, we may assume
that vol is the Euclidean volume form. Then by linearity and looking at each component, we
reduce to the case of finding an adjoint to f ∂

∂xI for f : Rn → C some smooth function, but this
has adjoint (−1)|I| ∂

∂xI (f · (−)) by Stokes’ theorem.

Symbols of differential operators are compatible with adjoints and composition in the fol-
lowing sense:

Proposition 4.14. With the notation of Proposition 4.13 we have that

(i) σ(L∗)(x, ξ) = σ(L)(x, ξ)∗ where the adjoint here is with respect to the Hermitian inner products on
Ex and Fx

(ii) ifM : A0(F ) → A0(G) is another differential operator, then σ(M ◦ L) = σ(M) ◦ σ(L).

Proof. Since σ(L|U ) = σ(L)|U , both these statements may be checked locally. Now, locally, L is
of the form ∑

|I|≤k

(LI
ij)ij

∂

∂xI
, (4.2.8)

so claim (ii) follows from the coordinate definition of σ(L) by an application of the chain rule.
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Next, since we have that (L1 ◦ L2)
∗ = L∗

2 ◦ L∗
1 and (L1 + L2)

∗ = L∗
1 + L∗

2, using (4.2.8) it
suffices to prove (i) for matrix multiplication, i.e. differential operators of order 0, and ∂

∂xI . For
differential operators of order 0, (ii) is clear. For the second case, using the same reductions as
in Proposition 4.13, we have that the adjoint of ∂

∂xI is (−1)I ∂
∂xI which have symbols

σ
( ∂

∂xI

)
(x, ξ) = i|I|ξI

and
σ
(
(−1)|I|

∂

∂xI

)
(x, ξ) = (−i)|I|ξI .

Since ξI is real, the result follows.

Given that adjoints exist, a wishful conjecture motivated by finite dimensional linear algebra
is that kerL(M) and imL∗(M), which are L2-orthogonal subspaces, give a decomposition of
A0(E). In finite dimensions, this fact is proven by dimension counting, but here A0(E) is infi-
nite dimensional. In general, it turns out that this conjecture is false, but when our differential
operator L is elliptic we do get such a decomposition, which is the crux of this section.

Definition 4.15. A differential operator L is elliptic if for every (x, ξ) ∈ T ∗M , ξ ̸= 0, the symbol
σk(L)(x, ξ) ∈ HomC(Ex, Fx) is injective.

We can then finally state the fundamental result on elliptic differential operators.

Theorem 4.16. Let (M, vol) be smooth manifold with volume form and E,F Hermitian vector bundles
of the same rank overM , and suppose that L : A0(E) → A0(F ) is an elliptic differential operator. Then

(i) kerL(M) ⊆ A0(E) is finite-dimensional

(ii) imL(M) ⊆ A0(F ) is closed (in the induced L2-norm topology) and of finite codimension

(iii) there is an L2-orthogonal direct sum decomposition A0(E) = kerL(M)⊕ imL∗(M).

4.2.3 Elliptic complexes and the Hodge Theorem

Having gone through the preliminaries of defining theL2-inner product and discussing the nec-
essary tools from differential and functional analysis, we can begin to apply the results to Hodge
theory. Our first goal is to find a source of elliptic operators to which the theory of Section 4.2.2
applies. One such source are elliptic complexes first introduced by Atiyah and Bott [1], which
extends elliptic operators, being operators with injective symbols, to collections of operators
whose symbols fit into an exact sequence.

Let (M, vol) again be a smooth manifold with volume form.

Definition 4.17. LetE1, . . . , EN be Hermitian vector bundles overM . A sequence of differential
operators

A0(E0) A0(E1) A0(E2) · · · A0(EN )
L0 L1 L2 LN−1 (4.2.9)
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is called an elliptic complex if Lj+1 ◦ Lj = 0 for all j and the associated sequence of symbols

0 π∗E0 π∗E1 · · · π∗EN 0
σ(L0) σ(L1) σ(LN−1)

is exact away from the zero section, i.e. exact when restricted to each fibre (x, ξ) ∈ T ∗M , ξ ̸= 0.
Given an elliptic complex (E•, L•)we define the cohomology of E• to be

Hk(E•, L•) := Hk(Γ(A0(E•), L•)) =
ker(Lk(M) : A0(Ek) → A0(Ek+1))

im(Lk+1(M) : A0(Ek−1) → A0(Ek))
,

i.e. the cohomology of the global sections of the complex (4.2.9).

Remark 4.18. In our case, the sheaves in (4.2.9) are fine sowehave thatHk(E•, L•) = Hk(M, (A0(E•), L•)).
Example 4.19 (deRhamcomplex). Wesaw inExample 4.8 that the exterior derivative d : Ak

C(M) →
Ak+1

C (M) is a differential operator, and these operators fit into a complex

A0
C(M) A1

C(M) A2
C(M) · · · An

C(M)d d d d

with n = dimRM called the (complex) de Rham complex. By Example 4.12, this has associated
symbol complex at the point (x, ξ) given by

0 Ω0
M,C,x Ω1

M,C,x · · · Ωn
M,C,x 0.

iξ∧(−) iξ∧(−) iξ∧(−)

which by basic linear algebra is exact when ξ ̸= 0. Thus the de Rham complex is elliptic.
As their name suggests, elliptic complexes are a convenient source of elliptic operators.

Definition 4.20. Let (E•, L•) be an elliptic complex. The associated Laplacians are given by∆j =

Lj−1L
∗
j−1 + L∗

jLj : A0(Ej) → A0(Ej).

One immediately sees that the ∆j are self-adjoint differential operators, but they also are
elliptic. Indeed, Proposition 4.14 shows that

σ(∆j) = σ(Lj−1) ◦ σ(Lj−1)
∗ + σ(Lj)

∗ ◦ σ(Lj).

Evaluating at points (x, ξ) ∈ T ∗M , ξ ̸= 0, then reduces injectivity of σ(∆j)(x, ξ) to following
linear algebra statement.

Lemma 4.21. Given an exact sequence

0 V1 V2 · · · VN 0
f1 f2 fN−1 (4.2.10)

of finite-dimensional C-inner product spaces, each fj−1 ◦ f∗j−1 + f∗j ◦ fj is injective.
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Proof. Write Fj = fj−1 ◦ f∗j−1 + f∗j ◦ fj . Suppose Fjx = 0. Then we have that

0 = ⟨x, Fjx⟩

= ⟨f∗j−1x, f
∗
j−1x⟩+ ⟨fjx, fjx⟩.

Thus f∗j−1x = 0 and fjx = 0. By exactness of (4.2.10) we can write x = fj−1y and so

0 = ⟨y, f∗j−1x⟩ = ⟨x, x⟩.

Thus x = 0.

Now, let M be assumed to be compact so that the L2-inner product turns each A0(Ej) into
an inner product space. Then we have

Proposition 4.22. Let α ∈ A0(Ej). Then ∆jα = 0 if and only if Ljα = 0 and L∗
j−1α = 0.

Proof. One direction is obvious. For the other direction, we have that

0 = ⟨α,∆jα⟩Ej
= ⟨L∗

j−1α,L
∗
j−1α⟩Ej−1

+ ⟨Ljα,Ljα⟩Ej+1
,

so ∆jα = 0 implies Ljα = 0 and L∗
j−1α = 0.

We give sections α ∈ A0(Ej) satisfying ∆jα = 0 a special name.

Definition 4.23. Let α ∈ A0(Ej). If ∆jα = 0 we say that α is harmonic and we denote by H(Ej)

the space of harmonic sections in A0(Ej).

Applying the fundamental Theorem 4.16 of elliptic operators, we arrive at

Theorem 4.24 (Hodge Theorem). Let (E•, L•) be an elliptic complex. Then for every k we have that

(i) Hk(E•, L•) is finite-dimensional

(ii) there is an L2-orthogonal direct sum decomposition A0(Ek) = H(Ej)⊕ imLk−1(M)⊕ imL∗
k(M)

(iii) the natural map H(Ek) → Hk(E•, L•) is an isomorphism.

Proof. We have that ∆k is an elliptic operator, so by Theorem 4.16 we get that ker∆k is finite-
dimensional and

A0(Ek) = ker∆k ⊕ im∆∗
k = ker∆k ⊕ im∆k

seeing as ∆k is self-adjoint. Now, im∆k ⊆ imLk−1(M) ⊕ imL∗
k(M) but on the other hand if

γ ∈ ker∆k, then

⟨Lk−1β1 + L∗
kβ2, γ⟩Ek

= ⟨β1, L∗
k−1γ⟩Ek−1

+ ⟨β2, Lkγ⟩Ek+1

= 0
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for all β1, β2 by Proposition 4.22. Thus

imLk−1(M)⊕ imL∗
k(M) ⊆ (ker∆k)

⊥ = im∆k.

Hence we get that im∆k = imLk−1(M)⊕ imL∗
k(M).

Thus we find that

kerLk(M) ⊆ (imL∗
k(M))⊥ = ker∆k ⊕ imLk−1(M)

and reverse containment is clear by Proposition 4.22 and the fact that Lk ◦ Lk−1 = 0. Thus we
conclude that

kerLk(M) = ker∆k ⊕ imLk−1(M)

and the theorem follows by definition of Hk(E•, L•).

4.3 Hodge decomposition for flat connections

4.3.1 Elliptic differentials and λ-D-connections

We may now return to the case of interest. Let X be a complex manifold and suppose we have
a differential D on the pair (O,K) = (A0

C(X),K). Note we may view K as a complex vector
bundleK overX having K as its sheaf of sections. Then, just as in Example 4.8, we have that for
f ∈ A0

C(X),
[D(k), f ]ω = D(k)(fω)− fD(k)(ω) = D(0)f ∧ ω

so D(k) is a differential operator of order 1. This has symbol

σ1(D
(k))(x, (df)x)(e) = i(D(0)f)(x) ∧ e

and seeing asD(0) gives aC-linear derivation ofA0
C(X)x at every x ∈ X , it induces awell-defined

map
σD : A1

C(X) K.

making
A0

C(X) K

A1
C(X)

D(0)

d σD

commute, for which we can write

σ1(D
(k))(x, ξ)(e) = iσD,x(ξ) ∧ e.
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Now, because D2 = 0, we get an associated complex

O K
∧2

O K · · ·
∧n

O KD D D D (4.3.1)

where n = rankK = dimCK. We will say thatD is elliptic if (4.3.1) is an elliptic complex. By the
above, we find

Proposition 4.25. The differential D is elliptic if and only if the composite

(T ∗X)x (T ∗
CX)x Kx

σD,x

is injective for all x ∈ X .

Proof. We have that the symbol complex associated to (4.3.1) at the point (x, ξ) is given by

0 C Kx

∧2
CKx · · ·

∧n
CKx 0

iσD,x(ξ)∧(−) iσD,x(ξ)∧(−) iσD,x(ξ)∧(−) iσD,x(ξ)∧(−)

which is exact if and only if σD,x(ξ) ̸= 0. Since this must hold for all (x, ξ) ∈ T ∗X with ξ ̸= 0,
we get the result.

Remark 4.26. Here we are freely translating between the language of complex vector bundles
over X and locally-free A0

C(X)-modules over X . To convert between these when deciding if D
is elliptic one should notice that ∧k

O K = A0(
∧k

CK).
Example 4.27. Example 4.19 shows that the exterior derivative d on the pair (A0

C(X),A1
C(X)) is

elliptic. Alternatively, we have that σd = id so this follows immediately from Proposition 4.25.
Example 4.28 (Dolbeault complex). We have that the differentials ∂ and ∂ on (A0

C(X),A1,0(X))

and (A0
C(X),A0,1(X)) respectively are elliptic. Indeed, we have a decomposition

A1
C(X) = A1,0(X)⊕ A0,1(X).

If π1,0 and π0,1 are the two projections, then we find that σ∂ = π1,0 and σ∂ = π0,1, by definition.
Both of these are injective on each fibre of the real cotangent space T ∗X ⊆ T ∗

CX , giving that ∂
and ∂ are elliptic by Proposition 4.25.

More generally, given a λ-D-connection ∇ on a complex vector bundle E, we have that

[∇(k), f ](v ⊗ ω) = λv ⊗ (Df ∧ ω)

so each ∇(k) is

• a differential operator of order 0 if λ = 0

• a differential operator of order 1 if λ ̸= 0.
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Additionally, when λ ̸= 0, we can compute the symbols of the ∇(k) just as in Example 4.12 to
find

σ1(∇(k))(x, ξ)(v ⊗ ω) = λv ⊗ σ1(D
(k))(x, ξ)(ω)

Now, if ∇ is a flat connection, we get a complex

A0(E) A0(E)⊗O K A0(E)⊗O
∧2

O K · · · A0(E)⊗O
∧n

O K∇(0) ∇(1) ∇(2) ∇(n−1)

(4.3.2)
where n = rankK. This has symbol complex

0 π∗E ⊗C π
∗C π∗E ⊗C π

∗K

· · · π∗E ⊗C π
∗ ∧n

CK 0.

λ id⊗σ(D(0))

λ id⊗σ(D(1))

Evaluating fibre-wise, we see that if D is elliptic, then (4.3.2) is elliptic.
Example 4.29. Given a holomorphic vector bundle (E, ∂E) over X , seeing as by Example 4.28
that ∂ is elliptic, the flat 1-∂-connection ∂E gives an elliptic complex.

4.3.2 The holomorphic case

The above section discussed flat λ-D-connections and identified a case in which the Hodge The-
orem 4.24 applieswhen λ ̸= 0. This leaves open the case of λ = 0. Moreover, theHodge Theorem
4.24 is smooth in nature, and thus only allowed us to apply it to differentials on K where K is a
locally free sheaf of A0

C(X)-modules. However, we would also like to work in the holomorphic
category and apply these results for differentials on locally free sheaves of OX -modules, as well
as to associated connections. The goal of this section is to overcome both these limitations at
once.

LetE be a complex vector bundle overX and supposewe have two connections on a complex
vector bundle E:

• a flat 1-∂-connection ∂E on E, turning E into a complex vector bundle
• a flat λ-∂-connection ∇

such that
∂E∇+∇∂E = 0.

Then we have that L = ∂E +∇ is not a connection, but it is still a differential operator of order
1 with L2 = 0. Moreover, one computes

σ1(L)(x, ξ)(v ⊗ w) = iv ⊗ (π0,1ξ + λπ1,0ξ) ∧ ω

and thus we have an elliptic complex
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A0(E) A1(E) A2(E) · · · A2n(E).L L L L (4.3.3)

where 2n = dimRX . Now, seeing as ∂E and∇ anti-commute, we get that∇ descends to a λ-dh-
connection on the holomorphic vector bundle E = ker(∂E : A0(E) → A1(E)). If Ωp

X is the sheaf
of holomorphic p-forms on X , then we thus we have a complex

E E ⊗OX
Ω1

X E ⊗OX
Ω2

X · · · E ⊗OX
Ωn

X .
∇ ∇ ∇ ∇ (4.3.4)

Proposition 4.30. The complexes (4.3.3) and (4.3.4) are quasi-isomorphic.

Proof. We have a double complex

E E ⊗OX
Ω1

X E ⊗OX
Ω2

X · · · E ⊗OX
Ωn

X

A0,1(E) A1,1(E) A2,1(E) · · · An,1(E)

A0,2(E) A1,2(E) A2,2(E) · · · An,2(E)

... ... ... ...

∇ ∇ ∇ ∇

∇

∂E

∇

−∂E

∇

∂E

∇

(−1)n∂E

∇

∂E

∇

−∂E

∇

∂E

∇

(−1)n∂E

where the columns are resolutions of the E⊗OX
Ω•

X by the ∂E-Poincaré lemma. Thuswe are done
by Proposition 2.5 seeing as (A•(E), L) is the simple complex associated to the double complex
(Ap,q(E),∇, (−1)p∂E).

Thus, as (4.3.3) is elliptic, we may use the Hodge Theorem 4.24 to compute the cohomology
of (4.3.4). Note also that this process is reversible: Given a holomorphic vector bundle (E ,∇)

with flat λ-dh-connection ∇, we can view E as a complex vector bundle (E, ∂E) with flat 1-∂-
connection ∂E and lift∇ to a λ-∂-connection onE which anti-commutes with ∂E . Thus we have
imported the tools of the Hodge Theorem 4.24 to holomorphic vector bundles (E ,∇) with flat
λ-dh-connections for all λ ∈ C.

4.4 The case of Kähler manifolds

We finally return to the case in which (X,ω) is Kähler manifold. Fix a smooth complex vector
bundle E over X . The goal here will be to consider certain families (Eλ,∇λ) of holomorphic
structures Eλ on E with λ-dh-connections ∇λ. Provided that the pairs (Eλ,∇λ) vary appropri-
ately, we will be able to relate the Laplacians occurring in the associated elliptic complex (4.3.3)
discussed in Section 4.3.2 in such a way that, after applying the Hodge Theorem 4.24, gives in-
variance of Hk(X, (Eλ ⊗OX

Ω•
X ,∇λ)) as λ varies.
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4.4.1 The Chern connection

Supposewe have a flat 1-d-connection∇ on a complex vector bundleE overX . Thenwemay de-
compose∇ = ∇1,0+∇0,1 into its (1, 0) and (0, 1)-components. Then,∇1,0 is a flat 1-∂-connection
on E and∇0,1 is a flat 1-∂-connection on E. Moreover, we have that

∇1,0∇0,1 +∇0,1∇1,0 = 0

by flatness of ∇. Thus flat 1-d-connections arise as constructions of the form considered in Sec-
tion 4.3.2. The Chern connection of a holomorphic vector bundle gives a partial converse to this
observation.

Proposition 4.31. Let (E, ∂E) be a holomorphic vector bundle over X with Hermitian metric h. Then
there exists a unique 1-d-connection∇ on E, called the Chern connection of (E, ∂E) with respect to h,
such that

(i) given sections σ, τ of E we have d⟨σ, τ⟩h = ⟨∇σ, τ⟩h + ⟨σ,∇τ⟩h, i.e.∇ is unitary

(ii) ∇0,1 = ∂E

Moreover, ∇1,0 is a flat 1-∂-connection on E.

Remark 4.32. In (i), writing ⟨ , ⟩h in taken to mean applying ⟨ , ⟩h on the E-components, i.e.
⟨ω ⊗ e1, e2⟩h = ⟨e1, e2⟩hω and ⟨e1, ω ⊗ e2⟩h = ⟨e1, e2⟩hω. Note the conjugation of the 1-form
component when it occurs as the right entry due to the sesquilinearity of h.

Proof. For uniqueness, taking the (1, 0)-part of the metric compatibility constraint (i), we get
that

∂⟨σ, τ⟩h = ⟨∇1,0σ, τ⟩h + ⟨σ, ∂Eτ⟩h.

Thus, taking a local holomorphic frame {σi}i for E, we get that

⟨∇1,0σi, σj⟩h = ∂⟨σi, σj⟩h.

Seeing as h is non-degenerate this uniquely determines∇1,0. Moreover, one checks such a defi-
nition defines a 1-∂-connection ∇1,0 and setting∇ = ∇1,0 + ∂E gives existence.

As for the flat-ness of ∇1,0, we have that locally

⟨(∇1,0 ◦ ∇1,0)σi, σj⟩h = ∂2⟨σi, σj⟩h = 0

so ∇1,0 ◦ ∇1,0 = 0.

One can also do the same with flat 1-∂-connections on E.

Corollary 4.33. Let (E, ∂E) be a complex vector bundle over X with flat 1-∂-connection ∂E and Her-
mitian metric h. Then there exists a unique 1-d-connection ∇ on E such that
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(i) ∇ is unitary

(ii) ∇1,0 = ∂E .

Moreover, ∇0,1 is a flat 1-∂-connection on E.

Proof. We have that h induces a Hermitian metric on E and ∂E induces a holomorphic structure
∂E on E. Then apply Proposition 4.31 and conjugate back.

4.4.2 Harmonic families

Let (E1,∇1) be a holomorphic vector bundle with a flat 1-dh-connection ∇1, with associated
C∞-bundle (E, ∂E). Choose a Hermitian metric h on E. By Proposition 4.31, we get a flat 1-
∂-connection δh such that ∂E + δh is a unitary connection and by Corollary 4.33 we get a flat
1-∂-connection δ′h such that ∇1 + δ′h is a unitary connection.

Interpolating between these, we get a family

∂E,λ =
(1 + λ)∂E + (1− λ)δ′h

2
(1-∂-connection)

∇λ =
(1 + λ)∇1 + (λ− 1)δh

2
(λ-∂-connection)

(4.4.1)

of connections. A priori, these have no reason to be flat connections, nor anti-commuting. How-
ever, when this is the case, we get a family (Eλ,∇λ) of holomorphic bundles (with constant
underlying complex bundle E) with flat λ-dh-connections ∇λ. We give these families a special
name.

Definition 4.34. Given a complex vector bundle E overX , a family (Eλ,∇λ) is called harmonic if
there exists a Hermitian connection h onE such that (Eλ,∇λ) arises from the above construction
applied to (E1,∇1). In such a case, we call h a harmonic metric.

4.4.3 Kähler identities and the Abelian Hodge theorem

Our goal is to show that when X is compact Kähler and (Eλ,∇λ) is a harmonic family, then
Hk(X, (E⊗OX

Ω•
X ,∇λ)) is independent ofλ. To do this, given a harmonic family, wemay consider

the differential operators
Dλ = ∂E,λ +∇λ.

Then, by Proposition 4.30, (E ⊗OX
Ω•

X ,∇λ) is quasi-isomorphic to the elliptic complex

A0(E) A1(E) A2(E) · · · A2n(E).
Dλ Dλ Dλ Dλ (4.4.2)

To apply our Hodge Theorem 4.24 effectively, we will need to get a handle on the Dλ and their
adjoints D∗

λ. When considering adjoints in this section, the vector bundles E ⊗C Ωk
X,C will be
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given the Hermitian metric induced by (c.f. Section 4.2.1) the harmonic metric h on E and the
Kähler metric on X .

First, observe that we may write

Dλ = D0 + λD′

where
D′ =

∂E +∇1 + δh − δ′h
2

.

A quick exercise shows that D2
0 = (D′)2 = 0 and D′ and D0 are anti-commuting. From this

it also follows that the Dλ are pairwise anti-commuting. Next, letting Λ be the adjoint of the
Lefschetz operator

L : Am
C (X) Am+2

C (X)

α α ∧ ω

then, as noted in [12], we have generalizations of the usual Kähler identities for these operators.

Lemma 4.35 (Kähler identities). We have that (D′)∗ = i[Λ, D0] and D∗
0 = −i[Λ, D′].

Proof. Follow the approach as in [8] for the traditional case of D0 = ∂, D′ = ∂. See also [11,
Lemma 3.1].

Corollary 4.36. Letting∆λ = DλD
∗
λ +D∗

λDλ we have that ∆λ = (1 + |λ|2)∆0.

Proof. First, observe that

(D′)∗D0 = i[Λ, D0]D0 = −iD0ΛD0 = −D0(D
′)∗

by using Lemma 4.35 and the fact that D2
0 = 0. Taking adjoints we get similarly that

D∗
0D

′ +D′D∗
0 = 0.

Thus we have

∆λ = (D0 + λD′)(D0 + λD′)∗ + (D0 + λD′)∗(D0 + λD′)

= ∆0 + λ(D′D∗
0 +D∗

0D
′) + λ(D0(D

′)∗ + (D′)∗D0) + |λ|2∆D′

= ∆0 + |λ|2∆D′ .

so we must show ∆D′ = D′(D′)∗ + (D′)∗D′ = ∆0.

27



For this, we have that

i∆0 = D0[Λ, D
′] + [Λ, D′]D0

= D0ΛD
′ −D0D

′Λ + ΛD′D0 −D′ΛD0

= D0ΛD
′ +D′D0Λ− ΛD0D

′ −D′ΛD0

= −D′[Λ, D0]− [Λ, D0]D
′

= i∆D′

again using the Kähler identities.

Corollary 4.37. Let ω ∈ Ak(E) be a form which is both Dλ and D0-closed and either Dλ or D0-exact.
Then there exists a χ ∈ Ak−2(E) such that ω = D0Dλχ.

Proof. We prove the case when ω is D0-exact. The other case follows similarly. Write ω = D0α

for some α. Seeing as
Ak(E) = ker∆0 ⊕ im∆0 = ker∆0 ⊕ im∆λ,

we may write α = γ +∆λβ with γ ∆0-harmonic. Then

D0α = D0∆λβ = ∆λD0β

seeing as Dλ and D∗
λ both anti-commute with D0, so ∆λ commutes with D0. Then as Dλω = 0,

we get that
Dλ∆λD0β = 0 =⇒ ∆λD0β = DλD

∗
λD0β.

Thus
ω = DλD

∗
λD0β = D0DλD

∗
λβ

so we are done.

This has a striking consequence.

Theorem 4.38 (Abelian Hodge Theorem). Let (Eλ,∇λ) be a harmonic family over a compact Kähler
manifold X . Then the projection

⋂
µ∈C kerDµ/

⋂
µ∈C imDµ Hk(A•(E), Dλ) ∼= Hk(X, (Eλ ⊗OX

Ω•
X ,∇λ)).

∼=

is an isomorphism for all λ ∈ C.

Proof. Indeed, we have a natural projection⋂
µ∈C

kerDµ −→ Hk(A•(E), Dλ). (4.4.3)
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By the Hodge Theorem 4.24, we have that every class in Hk(A•(E), Dλ) has a ∆λ-harmonic
representative α. But if ∆λα = 0, then ∆µα = 0 for all µ by Corollary 4.36, and hence α is
Dµ-closed for all µ. Hence the map (4.4.3) is surjective.

Now, (4.4.3) has kernel
imDλ ∩

⋂
µ∈C

kerDµ

which by Corollary 4.37 is equal to ⋂
µ∈C imDµ, completing the result.

Remark 4.39. Given that we have Dλ = D0 + λD′, one checks easily that⋂
µ∈C

kerDµ/
⋂
µ∈C

imDµ = (kerD0 ∩ kerD1)/(imD0 ∩ imD1).

Moreover, seeing asDλ = D0+λ(D1−D0), the flat bundle (E1,∇1) and theHiggs bundle (E0,∇0)

are enough to recover the whole family (Eλ,∇λ). For this reason in literature it is common to
consider only the pairs of flat bundles and Higgs bundles related in this matter rather than the
interpolating family all together.

An exposition of this result relating the hypercohomologies at λ = 1 and λ = 0 (i.e. the
hypercohomologies of the flat bundle (E1,∇1) and Higgs bundle (E0,∇0)) from the perspective
of non-abelian Hodge theory can be found in [12]. The content of Theorem 4.38 first appeared
in [4] where a more algebraic approach can be found.

4.4.4 Consequences

From Theorem 4.38 we may derive many classical abelian Hodge theory results as corollaries.
First, as a full circle moment, we may rigorously address the observation of Section 4.1.

Corollary 4.40. Let X be a compact Kähler manifold. Then there is a decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q

where Hp,q is the space of classes representable by closed (p, q)-forms. Moreover, Hp,q ∼= Hq(X,Ωp
X).

In particular, if hp,q = dimCH
q(X,Ωp

X) then hp,q = hq,p.

Proof. Apply Theorem 4.38 with to the harmonic family (OX , λ · ∂) which can be seen to be
harmonic with respect to the usual Euclidean metric on C which has flat 1-d-connection d.

Note that in this case ⋂
µ∈C

kerDµ = ker ∂ ∩ ker ∂
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and if α ∈ Ak(X) is a k-form with pure type decomposition α =
∑

p,q α
p,q , then

α ∈ ker ∂ ∩ ker ∂ ⇐⇒ ∂αp,q = ∂αp,q = 0 for all p, q
⇐⇒ dαp,q = 0 for all p, q.

Thus ⋂
µ∈C

kerDµ =
⊕

p+q=k

(ker d ∩Ap,q(X))

giving the first part after applying the projection in Theorem 4.38 with λ = 1. To see that
Hp,q ∼= Hq(X,Ωp

X), apply the projection when λ = 0 and observe that ker d ∩ Ap,q(X) gets
sent to Hp(X,Ωp

X) under the isomorphism

Hk(A•(X), ∂) ∼= Hk(X, (Ω•
X , 0))

∼=
⊕

p+q=k

Hq(X,Ωp
X).

Corollary 4.41. IfX is a compact Kähler manifold, then the odd Betti numbers β2k+1(X) ofX are even.

Proof. We have by Corollary 4.40 that

β2k+1(X) =
∑

p+q=2k+1

hp,q = 2
∑

p+q=2k+1
p<q

hp,q.

In the case of Corollary 4.40, what made the decomposition so striking is that at some λ we
had∇λ = 0. Analyzing which families this may occur for, we are lead to a slightly more general
version of Corollary 4.40 which is also sometimes called the abelian Hodge theorem.

Corollary 4.42. LetX be a compact Kähler manifold and (E,∇) a complex vector bundle with flat 1-d-
connection ∇. If there exists a Hermitian metric on E such that ∇ is unitary, then we have a canonical
decomposition

Hk(X, E∇) =
⊕

p+q=k

Hp,q

where E∇ = ker(∇ : A0(E) → A1(E)) andHp,q is the space of forms representable by∇-closed (p, q)-
forms. Moreover, Hp,q ∼= Hq(X, E ⊗OX

Ωp
X) where E is the holomorphic vector bundle associated to

(E,∇0,1).

Proof. Suppose that h is Hermitian metric on E such that ∇ is unitary. Since ∇ is a unitary
connection, we have that∇ is the Chern connection with respect to h of the holomorphic vector
bundle (E,∇0,1). Thus δh = ∇1,0 and δ′h = ∇0,1 and we have that (E , λ · ∇1,0) is a harmonic
family. The rest of the proof is then the same as Corollary 4.40.
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5 Non-Abelian Hodge theory

5.1 Harmonic bundles and overview of strategy

Having seen the abelian Hodge theorem 4.38, classifying harmonic families becomes an imme-
diate interest. By Remark 4.39, rather than considering harmonic families all together, we will
switch to focusing on the endpoints λ = 1 and λ = 0 which are flat bundles and Higgs bundles
respectively and ask when an interpolating family of λ-connections exists.

Let us review the construction of harmonic families from Section 4.4.2. We start with a flat
bundle (E,∇) and break∇ into its (1, 0) and (0, 1)-components, writing∇ = ∇1,0 +∇0,1. Then,
for any Hermitian metric h on E, we then may find a flat 1-∂-connection and 1-∂-connection δh
and δ′h, respectively, such that∇0,1 + δh and∇1,0 + δ′h are unitary connections with respect to h.
We may then define

D0 =
∇0,1 + δ′h

2︸ ︷︷ ︸
1-∂-connection

+
∇1,0 − δh

2︸ ︷︷ ︸
0-∂-connection

.

This is the data of aHiggs bundle structure onE, provided the 1-∂-connection and 0-∂-connection
are both flat and anti-commute (c.f. Example 3.9). This is captured by the vanishing of the pseudo-
curvature2

Gh = D2
0.

Conversely, suppose we start with a Higgs bundle (E, ∂E , θ). Then, for anyHermitianmetric
h onE, wemay find a flat 1-∂-connection δ′′h such that ∂E+δ′′h is a unitary connection. Moreover,
θ has a formal adjoint θ†h (see Appendix A) which is a 0-∂-connection satisfying

⟨θe1, e2⟩h = ⟨e1, θ†he2⟩h

for all sections e1, e2 of E. Here ⟨ , ⟩h denotes applying h to the E-component and leaving the
1-form component unchanged, as in Remark 4.32. Then we may form

D1 = ∂E + θ†h︸ ︷︷ ︸
1-∂-connection

+ θ + δ′′h︸ ︷︷ ︸
1-∂-connection

which is a 1-d-connection on E. This is a flat connection when the curvature

Fh = D2
1

vanishes.
These constructions are inverse, in a sense. If we have a flat bundle (E,∇) and Hermitian

metric h on E such that the pseudo-curvature Gh = 0, then running the above construction to
the resulting Higgs bundle (E,D0)with the Hermitian metric h recovers (E,∇). Similarly, if we

2The reason for the name pseudo-curvature is that D0 is not a connection.
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start with a Higgs bundle (E,D0) and Hermitian metric h such that Fh = 0, then applying the
inverse construction to the resulting flat bundle (E,D1)with h recovers (E,D0).

We show this for the direction starting with a flat bundle. Indeed, in this case,

δ′′h =
∇1,0 + δh

2

since (
∇0,1 + δ′h

2

)
+

(
∇1,0 + δh

2

)
=

(
∇0,1 + δh

2

)
+

(
∇1,0 + δ′h

2

)
is a sumof twounitary connections, hence unitary. Similarly, taking the (1, 0) and (0, 1)-components
of the unitary conditions for ∇0,1 + δh and ∇1,0 + δ′h, we get

∂⟨e1, e2⟩h = ⟨∇0,1e1, e2⟩h + ⟨e1, δhe2⟩h
∂⟨e1, e2⟩h = ⟨δ′he1, e2⟩h + ⟨e1,∇1,0e2⟩h
∂⟨e1, e2⟩h = ⟨δhe1, e2⟩h + ⟨e1,∇0,1e2⟩h
∂⟨e1, e2⟩h = ⟨∇1,0e1, e2⟩h + ⟨e1, δ′he2⟩h.

Combining these, one shows
θ†h =

∇0,1 − δ′h
2

.

Thus∇0,1 = ∂E + θ†h and∇1,0 = θ+ δ′′h and the constructions are inverse in this case. Checking
the composite in the other direction is similar.

This motivates the following definition.

Definition 5.1. A harmonic bundle is a tuple (E,D0, D1), where D0 is a Higgs bundle structure
on E and D1 is a flat bundle structure on E, such that there exists a Hermitian metric h on E
relating D0 and D1 by the constructions above.

Remark 5.2. By definition, (Eλ,∇λ), where Eλ corresponds to (E, ∂E,λ), is a harmonic family if
and only if (E,D0, D1) is a harmonic bundle, where Dλ = ∂E,λ +∇λ. Conversely, (E,D0, D1)

is a harmonic bundle if and only if Dλ = D0 + λ(D1 −D0) describes a harmonic family.
We may turn harmonic bundles into a category by asking that morphisms be bundle mor-

phisms intertwining both D0 and D1. We call this category HBunX . Defining the categories
HiggsX and FlatBunX of Higgs bundle and flat bundles overX similarly, we immediately get
two forgetful functors

HBunX

FlatBunX HiggsX .

(E,D0,D1) 7→(E,D1) (E,D0,D1) 7→(E,D0)

We may also give harmonic bundles a natural notion of cohomology: Seeing as D0, D1 anti-
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commute when (E,D0, D1) is a harmonic bundle, D0 preserves ker(D1 − D0) and we have a
complex

(ker(D1 −D0 : A•(E) → A•+1(E)), D0) = (ker(D1 −D0 : A•(E) → A•+1(E)), D1).

If one define the cohomology of (E,D0, D1) to be the hypercohomology of this complex, then
we have

Proposition 5.3. The forgetful functors HBunX → FlatBunX and HBunX → HiggsX are coho-
mology preserving.

Proof. This follows immediately from the Abelian Hodge Theorem 4.38 and Remark 4.39.

The goal of the following sections will be to sketch a proof that these forgetful functors are
fully faithful and injective on objects, as well as identify their images on objects. Upon doing
this, we obtain a cohomology preserving equivalence between full subcategories of FlatBunX

and HiggsX .

5.2 Topological obstructions for harmonic bundles

To identify when we can find a Hermitian metric h on a flat bundle and Higgs bundle such that
Gh and Fh, respectively, vanish we begin by thinking about Chern classes.

Given any harmonic bundle (E,D0, D1)we know in particular thatE supports a flat connec-
tionD1. By Chern-Weil theory, if E is a smooth vector bundle, then for any 1-d-connection∇ on
E, the rational Chern characters of E may be computed as

chk(E) =
1

k!

(
i

2π

)k

tr(∇2 ∧ · · · ∧ ∇2︸ ︷︷ ︸
k times

) ∈ H2k
dR(X)⊗ C = H2k(X,C).

In particular, anyE occurring as part of a harmonic bundle should have vanishing Chern classes.
It turns out that considering the components of ch2(E) along the Kähler class is a useful thing

to do. This is due to the following proposition.

Proposition 5.4. For Ω = Fh or Gh, we have that

tr(Ω ∧ Ω).[ω]n−2 = (n− 2)!
{
∥Ω∥2L2 − ∥ΛΩ∥2L2

}
.

where n = dimCX .

Proof. First consider the case Ω = Fh. We have thatD1 = ∂E + δ′′h + θ+ θ†. Writing∇ = ∂E + δ′′h
which is a unitary connection by construction, we have that

Fh = ∇2 + (θ ∧ θ† + θ† ∧ θ) + (δ′′hθ + θδ′′h) + (∂Eθ
† + θ†∂E).
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Seeing as ∇ is a unitary connection, (∇2)† = −∇2 and using that

∂⟨e1, e2⟩ = ⟨δ′′he1, e2⟩+ ⟨e1, ∂Ee2⟩,

one checks
(F1,1

h )† = −F1,1
h

(F2,0
h )† = F0,2

h

(5.2.1)

where Fp,q
h denotes the (p, q)-component of Fh. A similar computation shows that the relations

(5.2.1) hold for Gh as well. Thus we prove the result for an arbitrary Ω ∈ A2(EndE) satisfying
the relations in (5.2.1).

For this, given theHermitian bundleEndE, wemaydefine aHermitian formH onAk(EndE)

for k ≤ n by
H(α, β) = ik

∫
X

tr(α ∧ β†) ∧ ωn−2.

Considering that ω is a real (1, 1)-form, we find that

Ak(EndE) =
⊕

p+q=k

Ap,q(EndE)

is an orthogonal decomposition for H . Moreover, the Leftschetz decomposition (c.f. [15, Prop.
6.22]) is also an orthogonal decomposition forH . Finally, we have that when β is a primitive (in
the sense of the Lefschetz decomposition) form of type (p, q), k = p+ q, then

H(α, β) = (−1)
k(k+1)

2 ik+q−p(n− k)!⟨α, β⟩L2 (5.2.2)

where the L2-inner product is defined in terms of the induced Hermitian metric on EndE (see
Appendix A and [15, Prop. 6.29]). These are known as the Hodge-Riemann bilinear relations.

Given the relations (5.2.1) hold for Ω, we have that∫
X

tr(Ω ∧ Ω) ∧ ωn−2 = H(Ω,Ω2,0 +Ω0,2 − Ω1,1).

Now, Ω2,0 and Ω0,2 are primitive by degree reasons, and Ω1,1 has Lefschetz decomposition

Ω1,1 = (Ω1,1 − 1

n
LΛΩ1,1) +

1

n
LΛΩ1,1
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by the Kähler identities. Thus, writing H(α) for H(α, α), we have that

H(Ω,Ω2,0 +Ω0,2 − Ω1,1) = H(Ω2,0) +H(Ω0,2)−H(Ω1,1 − 1

n
LΛΩ1,1)− 1

n2
H(LΛΩ1,1)

= (n− 2)!

{
∥Ω0,2 +Ω2,0∥L2 + ∥Ω1,1 − 1

n
LΛΩ1,1∥L2 − n− 1

n
∥ΛΩ1,1∥L2

}
= (n− 2)!

{
∥Ω− 1

n
LΛΩ∥L2 − n− 1

n
∥ΛΩ∥L2

}
where we have used orthogonality, (5.2.2) and the fact that ΛΩ = ΛΩ1,1 for degree reasons.
Finally, expanding out ∥Ω − 1

nLΛΩ∥L2 using that Λ is the adjoint of L with respect to the L2-
inner product, one completes the proof.

While the quantity tr(Fh ∧ Fh) has immediate meaning by Chern-Weil theory since Fh is a
curvature form, such an interpretation is less clear for the pseudo-curvature Gh. However, the
next proposition shows that tr(Gh ∧Gh) still has meaning.

Proposition 5.5. We have that tr(Gh ∧Gh).[ω]
n−2 = 0.

Proof. Webeginwith a flat bundle (E,D1) and produceD0 withGh = D2
0 . This gives an interpo-

lating familyDλ = D0+λ(D1−D0) of differential operators which are a sum of a 1-∂-connection
and a λ-∂-connection. Thus rescaling the (1, 0)-component and setting

∇λ = D0,1
λ + λ−1D1,0

λ

for λ ̸= 0, we see that each ∇λ is a 1-d-connection. Since E supports the flat connection D1, its
positive degree rational Chern classes are zero. Thus by Chern-Weil theory, we get

0 = ch2(E).[ω]n−2 =

∫
X

tr(∇2
λ ∧∇2

λ) ∧ ωn−2

= λ−2

∫
X

tr(D2
λ ∧D2

λ) ∧ ωn−2

where the last line comes from the fact that ω is of type (1, 1), allowing us to drop terms for
degree reasons. Hence for all λ ̸= 0we have∫

X

tr(D2
λ ∧D2

λ) ∧ ωn−2 = 0,

so letting λ→ 0 we are done.

Combining Propositions 5.4 and 5.5 we conclude the following.

(i) Going from flat bundles to Higgs bundles, we have that Gh = 0 if and only if ΛGh = 0

(ii) Going from Higgs bundles to flat bundles, we have that Fh = 0 if and only if ΛFh = 0 and
ch2(E).[ω]n−2 = 0.
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Seeing as having vanishing positive degree rational Chern classes is a topological obstruction to
solving Fh = 0, independent of h, we adopt ch2(E).[ω]n−2 = 0 as an assumption on our Higgs
bundles. From this, we then reduce solvingFh = 0 andGh = 0 to the a prioriweaker constraints
ΛFh = 0 and ΛGh = 0.

5.3 Existence criteria and the non-abelian Hodge theorem

5.3.1 Flat bundles to harmonic bundles

Let (E,D1) be a flat bundle over X . Having reduced to solving ΛGh = 0, we give metrics h
achieving this a name.

Definition 5.6. A harmonic metric on a flat bundle (E,D1) is a Hermitian metric h such that
ΛGh = 0.

Classifying when a Higgs bundle may be equippedwith a harmonic metric hwould then tell
us which Higgs bundle (E,D0)may be extended to a harmonic bundle (E,D0, D1). Thankfully,
there is a concise answer to this existence problem due to Corlette. The following result of non-
linear analysis comprises one half of the non-abelian Hodge correspondence.

Theorem 5.7 (Corlette [3]). A flat bundle admits a harmonic metric if and only if it is semisimple.
Moreover, this harmonic metric is unique up to scaling.

Here, a flat bundle (E,∇) is semisimple if every subbundle fixed by ∇ has a complementary
subbundle fixed by ∇.
Remark 5.8. The statement of Theorem 5.7 as it appears in [3] is stated in terms of the harmonicity
of the classifying map

Φh : X̃ → GLn(C)/U(n)

associated to h, where X̃ is the universal cover ofX . This ultimately is the reason for the adjective
“harmonic” appearing in harmonic metric and harmonic bundle. A discussion on the equiva-
lence between these two notions of harmonic metric can be found in the discussion proceeding
[12, Lemma 1.1].

5.3.2 Higgs bundles to harmonic bundles

Let (E,D0) be a Higgs bundle over X . Going from Higgs bundle to harmonic bundles is more
delicate. After imposing the topological constraint ch2(E).[ω]n−2 = 0, we are interested in solv-
ing ΛFh = 0. As it turns out, it is better to study the more general equation ΛFh = γ idE .

Definition 5.9. A Hermitian metric h on a Higgs bundle (E,D0) is called Hermitian-Yang-Mills
if ΛFh = γ idE for some constant γ ∈ C.

Luckily, the constant γ is topological in nature as the next proposition shows.
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Proposition 5.10. For a Higgs bundle (E,D0) with Hermitian-Yang-Mills metric h, we have

γ = − 2πi

(n− 1)!vol(X)
· ch1(E).[ω]n−1

rk(E)
.

Proof. On one hand, we have ∫
X

tr ΛFh · ω
n

n!
= γ rk(E)vol(X) (5.3.1)

since ΛFh = γ idE . On the other hand, in the notation of the proof of Proposition 5.4,

1

n

∫
X

tr ΛFh · ωn = H(− 1

n
LΛFh, L idE)

= −H(F1,1
h , L idE) +H(F1,1

h − 1

n
LΛFh, L idE).

But F1,1
h − 1

nLΛFh is a primitive (1, 1)-form, so

H(F1,1
h − 1

n
LΛFh, L idE) = C⟨F1,1

h − 1

n
LΛFh, L idE⟩L2

= C⟨ΛFh, idE⟩L2 − C⟨ 1
n
ΛLΛFh, idE⟩L2

= 0

where C is some constant coming from the Hodge-Riemann bilinear relations. Thus∫
X

tr ΛFh · ω
n

n!
= − 1

(n− 1)!
H(F1,1

h , L idE)

=
1

(n− 1)!

∫
X

trFh ∧ ωn−2

= − 2πi

(n− 1)!
ch2(E).[ω]n−1.

(5.3.2)

Combining (5.3.1) and (5.3.2) gives the result.

The quantities in Proposition 5.10 are important so we give them a name.

Definition 5.11. The degree of a vector bundle E over the compact Kähler manifold (X,ω) is

degω(E) = ch1(E).[ω]n−1.

The slope of E is defined as
µ(E) =

degω(E)

rk(E)
.

Thus, as every Higgs bundle occurring in a harmonic bundle must have vanishing Chern
characters, we see that the condition Fh = 0 is equivalent to the existence of a Hermitian-Yang-
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Mills metric and
ch2(E).[ω]n−2 = ch1(E).[ω]n−1 = 0.

To state our existence theorem for Hermitian-Yang-Mills metrics, we need some stability condi-
tions on our Higgs bundles.

Definition 5.12. Let (E , ϕ) be a Higgs bundle, where E is a holomorphic bundle and ϕ : E →
E ⊗ Ω1

X is the Higgs field. We say that E is stable if for every holomorphic subbundle F ⊆ E
preserved3 by ϕwe have µ(F) < µ(E).

We say that (E , ϕ) is polystable if it is the direct sum of of stable Higgs bundles of the same
slope.

The second half of the non-abelian Hodge theorem is then given to us by the following the-
orem, which tells us exactly when Hermitian-Yang-Mills metrics exist.

Theorem 5.13 (Simpson [11]). A Higgs bundle has a Hermitian-Yang-Mills metric if and only if it is
polystable. Moreover, such a metric is unique up to scalars.

Combining Theorems 5.7 and 5.13 we arrive at the statement of the non-abelian Hodge the-
orem, as promised in the introduction.

Corollary 5.14 (Non-Abelian Hodge Correspondence). Let (X,ω) be a compact Kähler manifold.
There is a cohomology preserving equivalence between

(i) semisimple flat bundles (E,∇) over X

(ii) polystable Higgs bundles (E , ϕ) over X with ch1(E).[ω]n−1 = ch2(E).[ω]n−2 = 0.

Remark 5.15. Here, and elsewhere in this essay, we have been ambiguous as to how one should
interpret themeaning of “cohomologypreserving.” While the appropriate interpretation should
be clear from the results stated and proven, one may formalize this by viewing the categories
HBunX , FlatBunX and HiggsX as differential graded categories. The equivalences above then
becomes equivalences of differential graded categories, fromwhich preservation of cohomology
may be interpreted as taking the associated k-th cohomology categories of the two equivalent
dg-categories. More on this is contained in [7, 12].

3We say ϕ preserves F if ϕ(F) ⊆ F ⊗ Ω1
X .
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A Constructions on Hermitian bundles

In this section we review some basic constructions on Hermitian vector bundles over a manifold
X . Throughout, E → X will denote a smooth, complex vector bundle over X , and h will be a
Hermitian metric on E.

Dual and tensorial extension

From the Hermitian metric h on E, we may give E∨ a Hermitian metric h∨. This is done by
asserting that in each fibre Ex of E, if e1, . . . , en is an orthonormal basis with respect to hx, then
the dual basis e∗1, . . . , e∗n is declared to be an orthonomal basis for (E∨)x = (Ex)

∨. Doing this
defines for each x ∈ X a Hermitian metric h∨x on (E∨)x. These metrics vary smoothly in x and
define the induced metric on E∨.

Now suppose that we have another Hermitian bundle F → X with metric k. Then E ⊗C F

comes with an induced Hermitian metric h⊗ k, given in each fibre by

⟨e1 ⊗ f1, e2 ⊗ f2⟩h⊗k = ⟨e1, e2⟩h · ⟨f1, f2⟩k.

This is referred to as tensorial extension. One may refer to Section 4.2.1 for a discussion of both
these induced metrics in the special case of interest to the broader essay.

Adjoints and extensions to EndE

By the above, a Hermitian metric h on E induces metrics on E∨ and hence on EndE = E ⊗E∨.
Moreover, the metric on E induces an involution

(−)† : EndE → EndE.

Fibre-wise, given A ∈ EndEx, A† is defined by insisting that

E∨
x E∨

x

Ex Ex

A
∨

∼= ∼=

A†

commutes, where the isomorphisms E∨ → E are induced by the metric h on E. These fibre-
wise maps vary smoothly, and define the operator (−)† : EndE → EndE which is a bundle
morphism of the underlying real vector bundles, and anti-linear on fibres.

The operator (−)† has two useful properties which may be checked locally in a trivializing
neighborhood. Firstly, for two global sections A,B ∈ Γ(X,EndE)we have that

⟨A,B⟩EndE = tr(AB†)
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where the inner product ⟨ , ⟩EndE refers to that given by the inducedmetric onEndE. Secondly,
given sections e1, e2 ∈ Γ(X,E) and A ∈ Γ(X,EndE)we have that

⟨Ae1, e2⟩h = ⟨e1, A†e2⟩h.

Thus A† is the adjoint of A with respect to the Hermitian metric h. Moreover, given another
Hermitian bundle (F, k), we may define

(−)† : EndE ⊗C F → EndE ⊗C F

by (−)†⊗ idF . In this case, we still have that for A ∈ Γ(X,EndE⊗C F ) and e1, e2 ∈ Γ(X,E) that

⟨Ae1, e2⟩h = ⟨e1, A†e2⟩h

where now ⟨ , ⟩h is meant to be interpreted as applying ⟨ , ⟩h to the E-components and leav-
ing the F -components unchanged. This is used in Section 5.1 when taking the adjoints of 0-∂-
connections.
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