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1 Introduction and motivation

Prismatic cohomology was introduced by Bhatt and Scholze [BS22] as a unifying framework for study-
ing various cohomology theories associated to 𝑝-adic formal schemes. It has specializations to crys-
talline, de Rham, syntomic and étale cohomology. As explained in previous talks, prismatic cohomol-
ogy is built by forming the prismatic site. That is, given a prism (𝐴, 𝐼) and an 𝐴 = 𝐴/𝐼-algebra
𝑅, the prismatic site (𝑅/𝐴)∆ is built by considering all prisms (𝐵, 𝐼𝐵) under (𝐴, 𝐼) with reduc-
tion under 𝑅. This site is given the discrete topology, and the (derived) global sections of the sheaf
O∆ : (𝐵, 𝐼𝐵) ↦→ 𝐵 computes the prismatic cohomology of 𝑅 over (𝐴, 𝐼).

For general topoi theoretic reasons, anyO∆-module on (𝑅/𝐴)∆ has an associated (derived) global
sections, allowing us to consider prismatic cohomology with coefficients in any sheaf on the prismatic
site. However, if we wish to still be able to specialise prismatic cohomology with general coefficients
to de Rham, étale and crystalline cohomology, then we must equip our sheaves with additional data.
Bhatt and Lurie [BL22a, BL22c, BL22b] propose that the correct coefficients, roughly speaking, are
in fact sheaves equipped with a filtration and Frobenius equivariance. They construct the appropri-
ate category of coefficients by geometrization, i.e. by constructing a (derived) stack 𝑋Syn such that
QCoh(𝑋Syn) (or at least its compact objects) are the coefficients for prismatic cohomology on 𝑋 .

Since prismatic cohomology may be viewed as a deformation of de Rham cohomology, it is useful
to recall some more classical instances of geometrization, which is the goal of this talk. This talk is
based on [BL22c, §2.2, §2.3].

2 Geometrization of filtrations and grading

Everything from here on out will be assumed to be appropriately derived. Fix a commutative ring 𝑅.
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2.1 Graded modules

Definition 2.1. Let Zdisc denote the set Z viewed as a discrete category. The ∞-category of graded
𝑅-modules is Fun(Zdisc, Mod𝑅).

The category of graded 𝑅-modules is symmetric monoidal via Day convolution

(𝐹 ⊗ 𝐺) (𝑛) = colim𝑖+ 𝑗=𝑛 𝐹 (𝑖) ⊗𝑅 𝐹 ( 𝑗) =
⊕
𝑖+ 𝑗=𝑛

𝐹 (𝑖) ⊗𝑅 𝐹 ( 𝑗).

One should think of 𝐹 : Zdisc → Mod𝑅 as remembering only the graded pieces, i.e. 𝐹 (𝑛) represents
the 𝑛-th graded component. There is a forgetful functor

colim : Fun(Zdisc, Mod𝑅) Mod𝑅

𝐹
⊕

𝑛∈Z 𝐹 (𝑛)

given by taking colimits, i.e. summing the graded pieces and forgetting the decomposition.

Theorem 2.2. There is a canonical equivalence

Fun(Zdisc, Mod𝑅) ≃ QCoh(𝐵G𝑚)

underwhich the forgetful functor colim : Fun(Zdisc, Mod𝑅) → Mod𝑅 gets identified with pullback
along 𝜋 : Spec 𝑅 → 𝐵G𝑚.

Proof (Sketch). 𝐵G𝑚 classifies line bundles on 𝑅-schemes, hence it comes with a tautological bundle
O(1) whose tensor powers we denote by O(𝑛) = O(1)⊗𝑛. The explicit equivalence is given in one
direction by

Fun(Zdisc, Mod𝑅) QCoh(𝐵G𝑚)
𝐹

⊕
𝑛∈Z 𝐹 (𝑛) ⊗𝑅 O(−𝑛).

□

We outline now two ways to think about this theorem. Whenever a group scheme 𝐺 acts on a
scheme 𝑋 , we get that 𝐺 also acts on QCoh(𝑋) where an element 𝑔 ∈ 𝐺 acts by

𝑇∗
𝑔 : QCoh(𝑋) → QCoh(𝑋).

In a sufficiently nice setting, the projection map 𝑋 → 𝑋/𝐺 is an fpqc cover, and thus QCoh(𝑋/𝐺)
may be computed from QCoh(𝑋) via descent. Doing this, one finds that

QCoh(𝑋/𝐺) ≃ QCoh(𝑋)ℎ𝐺
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is the homotopy fixed points of the action𝐺 ↷ QCoh(𝑋). Informally, a homotopy fix point is a sheaf
F ∈ QCoh(𝑋) along with an equivalence (not equality!)

𝛼𝑔 : F ≃ 𝑇∗
𝑔F

for every 𝑔 such that 𝛼𝑔1𝑔2 ≃ 𝑇∗
𝑔2𝛼𝑔1 ◦ 𝛼𝑔2 (ignoring higher equivalences and the topology on 𝐺).

In our setting, 𝑋 = Spec 𝑅 is a point and G𝑚 is acting trivially, so we have that 𝑇∗
𝑔 = id for

every 𝑔 ∈ G𝑚. Since we are taking homotopy fixed points, a homotopy fix point requires giving an
𝑅-module 𝑀 ∈ Mod𝑅 = QCoh(Spec 𝑅) along with an 𝑅-linear automorphism 𝛼𝑔 : 𝑀 → 𝑀 for
every 𝑔 such that 𝛼𝑔1𝑔2 ≃ 𝛼𝑔1𝛼𝑔2 , i.e. it is the data of a lift of 𝑀 to a G𝑚-representation. That is to say,

QCoh(𝐵G𝑚) ≃ Rep(G𝑚).

Thus the claim reduces to saying that a G𝑚-representation is the same as a graded 𝑅-module.
Since bothG𝑚 and Spec 𝑅 are affine, by passing to functions one may show that aG𝑚-representation

on an 𝑅-module 𝑀 is the same as turning 𝑀 into a comodule for the coalgebra O(G𝑚) = 𝑅[𝑡, 𝑡−1].
However, giving a coaction map

𝑎 : 𝑀 → 𝑀 ⊗𝑅 𝑅[𝑡, 𝑡−1]

we obtain a grading on 𝑀 by letting the 𝑛-th graded piece be the elements of 𝑀 sent to pure tensors
of the form 𝑚 ⊗ 𝑡𝑛. Conversely given a Z-grading on 𝑀 , we get a coaction map by

𝑎 : 𝑀 𝑀 ⊗𝑅 𝑅[𝑡, 𝑡−1]
𝑚

∑
𝑛∈Z 𝑚𝑛 ⊗ 𝑡𝑛

where 𝑚𝑛 are the homogeneous components of 𝑀 .
Under this equivalence, pullback along 𝜋 : Spec 𝑅 → 𝐵G𝑚 forgets the comodule structure and

returns the underlying module 𝑀 as claimed.

Remark 2.3. For the differential geometrically inclined, one may view that G𝑚 as 𝑆1 which is a torus.
Thus any representation of 𝑆1 will be able to be split into one dimensional irreducible representations.
This gives a decomposition of our representation into representations indexed by the characters of 𝑆1.
But the characters of 𝑆1, i.e. maps 𝑆1 → C× , are determined by their degree. Thus we get a Z-indexed
decomposition𝑉 =

⊕
𝑛∈Z𝑉𝑛 where 𝛼 ∈ 𝑆1 acts by multiplication by 𝛼𝑛 on𝑉𝑛.
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2.2 Filtrations

Definition 2.4. The∞-category of decreasing filtered 𝑅-modules is given byF(𝑅) = Fun(Zop, Mod𝑅)
where Z is given its usual poset ordering.

Explicitly, a filtered 𝑅-module is given by a diagram of the form

· · · 𝐹𝑖+1 𝐹𝑖 𝐹𝑖−1 · · ·

where no assumptions are made on the transition maps, though to square with classical intuition you
should image they are inclusions and that as 𝑖 gets smaller the 𝑖-th filtered component gets larger.

Every filtered module 𝐹 has an underlying module given by taking colimits

colim : Fun(Zop, Mod𝑅) Mod𝑅

which we denote by 𝐹. It also has an associated graded gr 𝐹 ∈ Fun(Zdisc, Mod𝑅) given by

gr 𝐹 (𝑛) = cofib(𝐹𝑖+1 → 𝐹𝑖).

We say that 𝐹 is complete if lim𝑖 𝐹
𝑖 = 0.

F(𝑅) is symmetric monoidal via Day convolution, i.e. via

(𝐹 ⊗ 𝐺) (𝑛) = colim𝑖+ 𝑗≥𝑛 𝐹 (𝑖) ⊗𝑅 𝐹 ( 𝑗).

Theorem 2.5. LetG𝑚 act onA1 = Spec 𝑅[𝜆] by assigning𝜆 to have weight 1. Then there is a canonical
equivalence

QCoh(A1/G𝑚) ≃ F(𝑅)

given in one direction by the Rees construction

Rees : F(𝑅) QCoh(A1/G𝑚)
𝐹

⊕
𝑛∈Z 𝐹 (𝑖) · 𝜆−𝑖 .

Under this identification and the identification of Theorem 2.2, pullback along 𝐵G𝑚 = pt/G𝑚 →
A1/G𝑚 corresponds to taking the associated graded and pullback along pt = G𝑚/G𝑚 → A1/G𝑚

corresponds to taking the underlying module.

In the Rees construction, multiplication by 𝜆 has transition maps given by the transition maps
𝐹 (𝑖 + 1) → 𝐹 (𝑖) in the filtration.
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Morally, we may view this as a family of modules parametrized by a parameter 𝜆 ∈ A1. Rescaling
the formal parameter 𝜆 leaves the construction invariant up to equivalence, so this family in fact is
parametrized by A1/G𝑚. Over the fiber 𝜆 = 1, we simply recover the underlying module. Setting
𝜆 = 0, we get

Rees(𝐹) ⊗𝑅 𝑅[𝜆]/(𝜆) ≃ cofib(Rees(𝐹) ·𝜆−→ Rees(𝐹))

≃
⊕
𝑛∈Z

cofib(𝐹 (𝑖 + 1) · 𝜆−𝑖−1 ·𝜆−→ 𝐹 (𝑖) · 𝜆−𝑖)

≃
⊕
𝑛∈Z

cofib(𝐹 (𝑖 + 1) → 𝐹 (𝑖))

≃ gr 𝐹

as claimed.
Moreover, vanishing of the parameter 𝜆 corresponds to a Cartier divisor in A1/G𝑚 whose associ-

ated line bundle we denote by O(−1), so the Rees construction may also be viewed as

𝐹
⊕

𝑛∈Z 𝐹 (𝑖) ⊗ O(𝑖).

3 Geometrization of de Rham cohomology

Our next goal is to geometrize the de Rham cohomology of a scheme 𝑋/𝑘 where 𝑘 is of characteristic
zero. Recall that for a 𝑘-scheme 𝑋 we have the de Rham complex

Ω•
𝑋/𝑘 =

(
0 O𝑋 Ω1

𝑋/𝑘 Ω2
𝑋/𝑘 · · ·

)
𝑑 𝑑 𝑑

whose (hyper)cohomology computes the de Rham cohomology of 𝑋 . Our goal is to find a stack 𝑋dR

such that we have a canonical equivalence

𝑅Γ(𝑋dR,O𝑋dR) ≃ 𝑅Γ(𝑋,Ω•
𝑋/𝑘).

One may in fact view this as an instance of a more general phenomenom: Given a vector bundle E on
𝑋 with flat connection ∇, we may extend the connection by the Leibniz rule to obtain a complex

0 E E ⊗O𝑋
Ω1

𝑋/𝑘 E ⊗O𝑋
Ω2

𝑋/𝑘 · · ·∇ ∇

whose (hyper)cohomology provides us with a cohomology theory of vector bundles with flat con-
nection. It turns out that 𝑋dR geometrizes this whole phenomenon as vector bundles on 𝑋dR are
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equivalent to vector bundles on 𝑋 with flat connection.
Recall as well that Ω•

𝑋/𝑘 has a filtration given by forgetting terms in the chain complex, called the
Hodge filtration, whose associated graded is the Hodge complex of 𝑋

Ω𝐻
𝑋/𝑘 =

(
0 O𝑋 Ω1

𝑋/𝑘 Ω2
𝑋/𝑘 · · ·

)
=
⊕

𝑖 Ω
𝑖
𝑋/𝑘 [−𝑖] .

0 0 0

Definition 3.1. Given a 𝑘-scheme 𝑋 , we define the de Rham stack 𝑋dR as a functor of points on
finitely generated 𝑘-algebras by

𝑋dR(𝑅) = 𝑋 (𝑅red)

where 𝑅red = 𝑅/Nil 𝑅.

Morally, 𝑋dR behaves like 𝑋 , but is not able to distinguish between infinitesimally close points so
that all maps Spec 𝑅 → 𝑋dR must factor through Spec 𝑅red → 𝑋dR. We have the following theorem
due to Simpson.

Theorem 3.2 (Simpson). For a smooth 𝑘-scheme 𝑋 , there is a natural identification

𝑅Γ(𝑋dR,O𝑋dR) ≃ 𝑅Γ(𝑋,Ω•
𝑋/𝑘).

Rather than prove this, our goal will be to explain how to upgrade this to keep track of the Hodge
filtration on de Rham cohomology. Indeed, derived global sections is given by (derived) pushforward
to a point. Thus if we want to remember the Hodge filtration, we should construct a variant 𝑋+

dR of
𝑋dR which lives over A1/G𝑚, then the (derived) pushforward of the structure sheaf along

𝜋 : 𝑋+
dR → A1/G𝑚

should recover the de Rham complex with its Hodge filtration.
Forgetting the filtration should correspond to taking the fibre over pt = G𝑚/G𝑚 ⊆ A1/G𝑚 and

should recover the plain de Rham space 𝑋dR, i.e. we should have a pullback

𝑋dR G𝑚/G𝑚

𝑋+
dR A1/G𝑚.

We can also optionally only remember the associated graded portion by forming the fiber over 𝐵G𝑚 ⊆
A1/G𝑚 which should give a space 𝑋Hodge.
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