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1 Existence of Adjoints

It is a basic fact that every right adjoint preserves all limits, but when is the converse true? Given a
continuous functor F : € — D, when can we guarantee the existence of a left adjoint? The goal
of this section is discuss some of the major theorems in category theory which guarantee existence of

adjoints.

L1 The General Adjoint Functor Theorem

Suppose we have a functor F : € — D.If G : D — Cis to be a left adjoint, we must have that
Hom(Ga, b) = Hom(a, Fb)

foreverya € D and b € C. In particular, Gz must represent the functor Hom(a, F—) : € — Set. In

fact, this pointwise consideration is sufficient.

Proposition r.r.1. Let F : C — D be a functor such that Hom(a, F—) : € — Set is representable for
everya € D, then F has a left adjoint.

Proof. 1f G is to be the left adjoint, then by the above discussion we are forced to set Gz to be a repre-
senting object for the functor Hom(a, F—). We now need to upgrade this to a functor.
Foreacha € D, fix a representing object Gz induced by 7, € Hom(a, FGa). Now, given f : a2 —

a’, we get an induced natural transformation
Hom(a, F-) = Hom(4/, F-)

and thus an induced morphism Ga — Ga’ which we define to be Gf'. One then checks that G : D —
C is a functor which is left adjoint to F by construction, and here  : 1 — FG ends up being the unit

of this adjunction. m]

We now digress slightly to discuss an alternate characterization of when a functor L : € — Set s

representable that will be useful to us.

Definition r.r.2. Let F : € — Set be a covariant functor. The category of elements of F, denoted
f F, is the category whose objects are pairs (¢, x) where ¢ € €Cand x € Fr and whose morphisms
(6 x) = (d, y) are morphisms /" : ¢ — d in € such that (£f)(x) = y.

For F : C°P — Set a contravariant functor, we define f F to be pairs (¢, x) withc € C,x € Frand
morphisms (¢ x) — (4, y) being maps f : ¢ — d in C such that (£f)(y) = «.



Example 1.1.3. We have that for a category Cand ¢ € C, f Home (¢, —) is the slice category €., and
/Hom@(—, ¢) is the slice category C/..

Proposition 1.x.4. A covariant functor F : C — Set is representable if and only if / F bas an initial

object. Dually, a contravariant functor is representable if and only if f F bas a terminal object.

Proof. Let (¢ x) € f F. Then x induces a natural transformation 7 : Hom(g, =) = F. Now, (¢ x)
is initial if and only if for every d € Cand y € Fd, there exists a unique morphism f : ¢ — d with
(£f)(x) = y. This, however, is exactly the statement that the induced map 7 : Hom(¢ d) — Fdisa
bijection for all d € C, i.e. that (¢, x) represents £. |

Corollary r.rs. A functor F : C — D bhas a left adjoint if and only if for every d € D, the category
A | F has an initial object.

Proof. Thisisadirect consequence of Propositionand Propositionupon realizing that f Hom(d, F-) =
dlF. O

Thus we have reduced the question of having a left adjoint to that of determining whether each

category d | F has an initial object. For this we have the following proposition.

Proposition 1.1.6. For any functor F : C — D and d € D, the forgetful functorIl : d | F — C
strictly creates any limits which exist in C and are preserved by F.

In particular, if F is continuous and C is complete, then d | F is complete.

Proof. Consider a diagram D : / — d | F and suppose that ¢ = lim; I1.D exists and is preserved by F
so that F¢ = lim; FTID. Now, the original diagram D provides a cone with summit d over FIID, so
we get a unique induced map d — Fc. One then checks that (¢ d — Fr) = lim; D. |

This proposition will allow us to construct initial objects of d | F. Recall thatinitial objects, which
are colimits of the empty diagram, can also be viewed as /imits of the identity functor. One might then
be tempted to conclude from Propositionthat if Fis continuous and C is complete, thend | FF
then has an initial object, but this is false—in general d | F is large, so the diagram id : d | F — d | F
is not a small limit and thus not guaranteed by completeness.

The General Adjoint Functor Theorem comes from Propositionby giving a sufficient con-

dition for the limitid : 4| F — d | F to be computed via a small diagram.

Theorem 1.1.7 (General Adjoint Functor Theorem). Let F : C — D be a continunous functor with
C complete and locally small. Suppose additionally that for every d € D the following solution set

condition 7s satisfied:



o there exists a set ®4 of morphisms d — Fe; such that every morphism d — Fc factors through
somed — Fe; € @y along a morphism ¢; — cin C.

Then F bas a left adjoint.

We will omit the proof, but the moral, as stated above, is that having the solution set condition

allows us to replace the large limit for computing an initial object with a small limit.

Example 1.1.8. Consider the inclusion Haus < Top. This inclusion is continuous as the product
and coequalizer of Hausdorft spaces is Hausdorft, which also shows that Haus is complete. Thus to
show Haus < Top has a left adjoint, it suffices to demonstrate the solution set condition.

For this, fix a topological space X. Let 8 be a set of homeomorphism class representatives for all
Hausdorff topological spaces with underlying set having cardinality < |X/|. This is a set because there
are only a sets worth of cardinals < |X|, and for each set of a given size, there’s only a sets worth of
topologies we can place on it. Now let @y be the set of all continuous maps X — Y forsome ¥ € 8.
Then given amap f : X — Z for any Hausdorff space Z, we have that £ (X) is a Hausdorft space of
cardinality < |X| and hence is homeomorphic to some element of §. Hence we may factor f through
an element of ®y.

It follows from the General Adjoint Functor Theorem that Haus < Top has a left adjoint, i.e.
Haus is a reflective subcategory of Top. As a corollary, we learn that Haus is cocomplete as a reflective

subcategory of the cocomplete category Top.

Example r.r.g. In a similar manner to Exercise[L.1.8] one may show that the forgetful functor U :

Group — Set has a left adjoint. This proves the existence of the free group functor.

1.2 The Special Adjoint Functor Theorem

The Special Adjoint Functor Theorem is another sufficient condition for reducing a large limit to a
small limit so that we may apply Proposition

To state the Special Adjoint Functor Theorem, we need the notion of subobjects.

Definition 1.2.1. Let Cbe a category and ¢ € C. A subobject of ¢ is a monomorphism ¢’ < ¢. We call

two subobjects ¢/, ¢’” isomorphic if there exists an isomorphism ¢" = ¢’ over c.

Definition 1.2.2. Given a collection of subobjects ¢; < «¢, the intersection of the ¢;’s, if it exists, is the

limit of the diagram of the ¢;’s mapping into c.
Remark 1.2.3. Itis easy to check thatif (), ¢; exists, then it is a suboject of each ¢; and thus also of ¢.

We need one final definition before stating the theorem.



Definition 1.2.4. A separating set of a category C is a set @ of objects of € such that for every two
parallel morphisms £, ¢ : x 3 y with f # g, there exists a morphism b : ¢ — x with ¢ € ® such that
fh # gh.

Dually, we have the notion of a coseparating set.

Example 1.2.5. By Urysohn’s lemma, ® = {[0, 1]} is a coseparating set for cHaus. Indeed, given two
distinct morphisms f; ¢ : X — Y between compact Hausdorft spaces, there exists some x € X such
that f(x) # g(x). Then by Urysohn’s lemma, there exists a map » : ¥ — I which separates f(x)
from g(x) so that bf # hg.

Theorem 1.2.6 (Special Adjoint Functor Theorem). Let F : € — D be a continuous functor with C
complete and both C and D locally small. If C admits a coseparating set and any collection of subojects
of a fixed object in C admits an intersection, then F has a left adjoint.

Proof. See [10, Theorem 4.6.10]. |

Example r.2.7. Consider the forgetful functor U : cHaus — Top. By Example[i.2.s} we know that
cHaus has a coseparating set and intersections of subobjects here corresponds to the usual intersec-
tion of subspaces and hence exist. Finally, cHaus is complete by Tychonoft’s theorem and the fact that
equalizers of compact Hausdorff spaces are compact Hausdorft, which also shows that U is continu-
ous. Thus by the Special Adjoint Functor Theorem, U has a left adjoint which proves the existence
of the Stone~Cech compactification 3 : Top — cHaus.

In fact, abstraction of the proof of the existence of Stone-Cech compactification is what gave

birth to the Special Adjoint Functor Theorem.

Remark 1.2.8. Any category € which satisfies the hypotheses of Theorem is also necessarily
cocomplete. Indeed, for any small category /, the category @ is also locally small and the constant
diagram functor A : € — ¢ is continuous. Thus it has a left adjoint by the Special Adjoint Functor

Theorem which implies that € has all colimits of shape /.

1.3 Freyd’s Representability Theorem

Let F : € — Set be a continuous functor with € complete. The solution set condition of Theorem
[.1.7]is there to provide an initial object to §' | F for every set . However, if we only care about F being
representable, then we need only construct an initial object of * | F = / F. This is the content of

Freyd’s Representability Theorem.

Theorem 1.3.1 (Freyd’s Representability Theorem). Let FF : C — Set be a continuous functor with C
complete and locally small. Suppose that F satisfies the following solution set condition:



o there exists a set @ of objects of C such that for every ¢ € Cand x € Ft, there exists some s € @,
y € Fsandf : 5 — csuch that (Ff)(y) = «.
Then F is representable.

Proof. The solution set guarantees the existence of an initial object of * | F' = f F. m]

1.4 Consequences for presentable categories

These adjoint functor theorems have an appealing consequences for a certain class of categories which

we introduce now.

Definition 1.4.1. Let « be a cardinal. A x-compact object of C is an object ¢ € € such that Hom(—, ¢)

commutes with x-filtered colimits.

Definition 1.4.2. A category C is x-accessible if it has all x-filtered colimits and there exists a set of «-
compact objects which generate C under x-filtered colimits. We say that € is accesszble if it is x-accessible
for some .

A functor F : € — D is called x-accessible if F commutes with x-filtered colimits. We say that £

is accessible if it is x-accessible for some «.

Definition 1.4.3. A locally small category C is called presentable (resp. x-presentable) if € is accessible

(resp. x-accessible) and cocomplete.
Remark 1.4.4. If Cis x-presentable, then C is A-presentable for all 1 > . Similarly for accessibility.

Theorem 1.4.5. Let F : C — D be a functor between two presentable categories. Then F

(i) admits a right adjoint if and only if it is cocontinunons

(17) admits a left adjoint if and only if it is continuous and accessible

Proof. (i) follows from the Special Adjoint Functor Theorem and (ii) follows from the General Ad-
joint Functor Theorem. See [10, Theorem 4.6.17] for further references. m|
1.4.1 Gabber’s result

We now discuss an application of this to classical algebraic geometry.

Definition 1.4.6. Let « be a cardinal. We say that an Oy-module J on a scheme X is x-generated if

there exists an open cover X = (J; U; such that each F|y;, is generated by at most x global sections
F(U).



Remark 1.4.7. Any x-generated O y-module is x-compactin O y—Mod. Moreover, since QCoh(X) <
Ox—Mod is cocontinuous, if ' € QCoh(X) is x-generated as an Oy-module, then it is x-compact in
QCoh(X).

Proposition 1.4.8 (Gabber). Foranyscheme X, there exists a cardinal x such that forany 3 € QCoh(X),

T is the direct limit of its x-generated subsheaves.
We first need a lemma.

Lemma 1.4.9. Let X be a scheme and x a cardinal. There are only a sets worth of isomorphism classes

of k-generated O x-modules.

Proof. First, note that there are only a sets worth of quotients @K Oy - J. Now, a k-generated
Ox-module is locally the quotient of a x direct sum of structure sheaves, so the result follows from
the fact that there is only a sets worth of open covers of X and then a sets worth of gluing data upon

specifying the restriction of F. m]

Proof of Proposz'tz'on(S/eetdo). Our goal is to show that any quasi-coherent sheaf J is generated as
a (directed) colimit of its x-generated subsheaves for « sufficiently large. The result then follows from
Lemma If X were affine, then we could take ¥ = w since any module is the directed colimit of
its finitely generated submodules. For a more general scheme X, we must make « larger as we must

include more generators in order to glue. For details see [, Tag 077K]. o

Gabber’s result (Proposition [1.4.8) nearly tells us that QCoh(X) is presentable. The issue, how-
ever, is that we have only shown that every object is a direct limit of a set of x-compact objects, but
not necessarily a x-filtered colimit. Upgrading Gabber’s result to the presentability of QCoh(X) takes

some work.

Definition 1.4.10. An abelian category C is called a Grothendieck abelian category if
(i) small filtered colimits are exact
(ii) Ciscocomplete

(ili) € admits a generator, i.e. an object A such that Home (4, —) is faithful.
Theorem 1.4.1x1 ([3, Proposition 3.10]). Every Grothendieck abelian category is presentable.

Remark 1.4.12. In fact, [3, Proposition 3.10] shows that in an abelian category where small filtered
colimits are exact, C being Grothendieck abelian is eguivalent to being presentable.
Grothendieck abelian categories also have other nice properties, such as there always exists suffi-

ciently many injectives.



Theorem 1.4.13. For any scheme X, QCoh(X) is Grothendieck abelian. In particular, QCoh(X) is

presentable.

Proof. By Gabber’s result (Proposition r.4.8)), we have that every quasi-coherent sheaf J is the direct
limit of its x-generated subsheaves. Now, by Lemmalr.4.9| there are only a sets worth of isomorphism

classes of x-generated quasi-coherent sheaves. Let S be a set of representatives of these isomorphism

classes. Then @9 s 9 is a generator for QCoh(X). |

Corollary 1.4.14. The inclusion QCoh(X) — Ox—Mod has a right adjoint Q : Ox—Mod —
QCoh(X).

Proof. The inclusion QCoh(X) < Ox—Maod is colimit preserving. Since QCoh(X) is presentable
by Theorem|t.4.13)and O x—Mod is presentable (exercise!), we get by Theorem|r.4.5|that QCoh(X) <
Ox—Mod has a right adjoint. m]

This has some nice corollaries. For example, given a morphism f : X — Y, we know that /™ :
Oy—Mod 2 Ox—Mod : f. is an adjoint pair. As a consequence, if f, preserves quasi-coherence,
e.g. if f is proper or qcgs, then £ : QCoh(X) — QCoh(Y) is right adjoint to /* : QCoh(Y) —
QCoh(X). However, in general, the right adjoint to *|qcon(y) will be given by Qfi|qcon(x) where
Q : Oy—Mod — QCoh(Y) is the adjoint given by Corollary

2 Monads and Barr—Beck

2.1 Monoidal categories, algebras and modules

In this section, we discuss the general notion of a monoidal category as well their algebra objects and
modules over said algebra objects.

The goal of monoidal categories is to abstract the notion of a “category with a tensor product”
where we drop the condition that the tensor product is commutative in its two arguments. We are
of the opinion that the proper way to define the coherence conditions of a monoidal category are

oco-categorical in nature, so we only sketch the definition for 1-categories.

Definition 2.1.1 (Sketch). A monoidal categoryisa category € equipped witha functor® : €x€ — C

and an object 1 € € such that there exists natural isomorphisms

2:((m9-)®-) — (-8 (-®-))



and

1® (-) SN ide

()l — ide

which are compatible in a suitable way.

Given a monoidal category (€, ®, 1), we may consider the category Alg(€) of algebra objects in €
defined as follows.

Definition 2.1.2. An algebra object in (C, ®,1) is an object 4 € C together with a multiplication
mapm : A ® A — 4 and unitmap ¢ : 1 — A satistying the following categorified associative and
unital axioms:
(i) the diagram
UA) @4 22 404
k
AR (A®A) m
\Lid ®m
A4 —"— 4

commutes

(ii) the diagrams

A=104 2% 4904 23 4
id

and
A=A401-9% 404 23 4
id
commute.

A homomorphism between algebra objects (4, m, ¢) — (A’, m’,¢’) is a morphism f : 4 — A" such

ol

Aod s 4

that

commutes. The category of algebra objects and homomorphisms is denoted by Alg(C).

Remark 2.1.3. The category Cat of all (small) categories is a monoidal category via the cartesian prod-

uct X. Then, a monoidal category is simply an algebra object of (Cat, X).

I0



Finally, given a monoidal category C and 4 € Alg(C), we wish to discuss modules over 4. For this

to make sense, we need a category on which € acts on in which our objects will live.

Definition 2.1.4 (Sketch). Let (€, ®) be a monoidal category and D another category. We say that
D is tensored over C if forany 4 € Cand X € D, there exists a well defined object 4 ® X which is

natural in 4 and X and satisfies appropriate unital and associative axioms.

Definition 2.r.5. Let D be tensored over (€, ®) and (4, m, ¢) € Alg(C). A module over A in D is an
object M € D along with an action map a4 : 4 ® M — A such that
(i) the diagram

ARARM) = (ARA) @ M 2% 40 M

Jo |

AM g > M

commutes

(ii) the diagram
M=10M -2 4o M —y M
id
commutes.
A homomorphism between two modules f : (M, a) — (M’, a’) is given by a morphism f : M —
M’ such that

id®f
AM —— A M’

M—L s ar
commutes. The category of 4-modules in C is denoted by Mod 4(C).
Given any algebra object 4, we always have a forgetful functor U : Mod4(€) — C which forgets
the module structure. This functor also always has a left adjoint given by the free module functor

F : € — Mod(C) which sends an object S € C to the module 4 ® § with scalar multiplication given
by

m®id

AQR(A®S) = (ARA) QS —— ARS.

2.2 Monads

Fix a category €. We may turn End(C) into a strictly monoidal category via composition of endofunc-

tors, and we have that C is tensored over End(C) via evaluation of endofunctors.

Definition 2.2.1. A monad acting on a category C is an algebra object of End(C).

II



Proposition 2.2.2. Given an adjunction F 4 U, let T = UF, 5 : 1 = T be the unit of adjunction
and e : T = 1 be the counit of adjunction. Then (T, UeE, y) is a monad.

Proof. A tedious diagram chase. m]

Two natural questions then arise:
* Does every monad arise in this way?
* Given an adjunction F 4 U, U : D — €, when can we recover D as Mod(C)?
The answer to the first question is yes, and we should study the second question by analyzing all such

categories and adjunctions which give rise to 7.

Proposition 2.2.3. Let T be a monad on C. Then the monad on C arising from the free forgetful
adjunction F : € 2 Mod7(C) : U isisomorphicto T.

Corollary 2.2.4. Let Freer € Mod(C) be the full subcategory of free T-modules, i.e. the essential
image of F : C — Modr(C). Then the monad arising from the adjunction F : C 2 Freer : U is
isomorphicto T.

Classically these categories have names.

Definition 2.2.5. The category Mod7(C) is referred to as the Eilenberg—Moore category, and the full

subcategory Freer € Modr(C) is referred to as the Kleisli category.

These two categories are in fact extremal solutions to the question of whether every monad arises
from an adjunction. Consider the following category Adj(7"): The objects are adjunctions /' : € 2

D : U inducing the monad 7', and the morphisms are commuting diagrams

Theorem 2.2.6. Modr(C) is terminal in Adj(T) and Freer is initial in Adj(T).

2.3 'The monadicity theorem

We now return to our second question posed at the beginning of the previous section. Given an

adjunction F : € 2 D : U with induced monad 7" on €, when can we recover D as Mod(C)?

12



Theoremtells us that, if F7 : € 2 Modr(€) : U7 is the free forgetful adjunction, then there

exists a unique morphism D — Mod7(C) making

D—— % Mods(C)
U yuyr
C.

commute. It thus suffices to analyze when this induced map is an equivalence. We call right adjoints
U : D — Cinducing an equivalence D =~ Mod 7 (C) monadic.
To develop some obstructions to this, we need to study the adjunction F T, € 2 Mods(C) :

UT. Consider the following diagram in Mod () for some T-module 4:

mid
T®T®A X T®A4—— 4 (2.3.1)
id ®a
One may check that this is a coequalizer diagram which is morally representing 4 via generators and

relations. Moreover, after applying U T this diagram is in fact sp/it in C via

m®id
T®T®A——XT®A— 4
e o

id ®94
where here 7 : 1 = T is the unit of the monad 7. Note, however, that 74 is not a homomorphism
of algebras so this splitting does not hold in Mod7(C). It turns out that every diagram indexed by
e =3 e in Mod7(C) which admits a split coequalizer in € after applying U Thasalifttoa coequalizer

in Mod7(C), as we will show now.

Remark 2.3.1. For those familiar, is the start of the augmented bar complex. Since we are in the
1-categorical context, we only need to remember the first two terms when computing the colimit, but
in an co-categorical context we should extend this complex into a full simplicial or semi-simplicial dia-
gram. Further terms would represent relations between relations, i.e. syzygies, then relations between

syzygies, and so on.

Definition 2.3.2. Let C be a category. A split coequalizer is a diagram

f b
A:§B—>C
K& S T~—

3



such that fh = gh, bt = idc, gs = idp and f5 = th.

Proposition 2.3.3. The underlying fork of a split coequalizer diagram is a coequalizer which is pre-

served by any functor.

Proof. Since any functor preserves split coequalizers, it suffices to show that the underlying fork of a
split coequalizer is a coequalizer. For this, suppose we have a morphism £ : B — D such thatkf = kg.
Then

k = kgs = kfs = kth

so k factors through /. One easily checks that this factorization is unique as well, since 4 is a split

epimorphism. O

Definition 2.3.4. Let U : D — C. We say that U creates U-split coequalizers if for any diagram
D of the form « =3 e in D which extends to a split coequalizer diagram in € under U, D extends
to a coequalizer diagram in D which lifts via U the underlying coequalizer of this split coequalizer.
Moreover, any fork in D which lifts the underlying coequalizer should be a coequalizer in D.

We say that U strictly creates U-split coequalizers if U creates U-split coequalizers and the lift is

unique.
Proposition 2.3.5. The forgetful functor U T Mod7(C) = € strictly creates U™ -split coequalizers.

Proof. Suppose that we have a diagram

M_—=N

£

of T-modules such that in C we have a split coequalizer diagram

f
M_—=N &/—b> A (23.2)

’k‘f/ t
We need to give 4 the structure of a 7-module, ideally in which » becomes a 7-module homomor-
phism. Now, since split coequalizer are absolute, we have that the underlying fork of is still a
coequalizer after applying 7". Thus we have a diagram

y .
TeM —=TeN 2% Te4

\L idjg \L \i;“ (23.3)

14



This unique filler map defines a morphism 4 : 7' ® 4 — A which will be the action map for 4. One
then checks that this turns 4 into a 7-module, and then commutativity of implies that b is a
homomorphism. Thus we have a lift of the underlying fork of (2.3.2). One checks that this is indeed

a coequalizer in Mod7(€), and in fact that this is the unique such lift. |

Theorem 2.3.6 (Barr—Beck). 4 right adjoint U : D — C is monadic if and only if it creates U-split

coequalizers.

Proof. Only if follows from Proposition [2.3.5} For the other direction, let K : D — Mod7(€) be
the canonical comparison functor and let 7 : € — D be the left adjoint of U. Then we have that
KF = Fland UTK = U. Thusif L : Mod7(€) — D is a proposed inverse equivalence, we must
have that F ~ LFT and UT ~ UL.

We thus define L on free T-modules via
L(T ® 4) = FA.
We now define L on a general 7-module (A4, 2) such that

E
FUFUTM = F(T ® U'M) —= FUTM ---% LM (2.3.4)
fruT M
is a coequalizer, where ¢ : FU = 1is the counit of the adjunction. The coequalizer in (2.3.4) exists

because it is U-split and U creates U-split coequalizers. Indeed, under U, the diagram is

id ®.
TeTeU'M —X ToU'M

m®id

which is extends to a split coequalizer diagram by the discussion at the beginning of this section.
Given a morphism f : (4,a) — (B, b) of T-modules, we define Lf to be the unique dashed

arrow making
Fa
FUFUTA=F(T®U"4) —= FU'4 — L4
fruT 4 I
\LFUFUTf lFU Tr LLf
v

Fa
FUFUTB=F(T® UTB) ——= FU'TB — LB

fruTp
commute.

One then checks that L defines an inverse equivalence to K. For details, see 10, Theorems.s.1]. O

There exists an alternate formulation of Theoremwhich separates the reflection and lifting

of U-split coequalizers into two parts.
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Theorem 2.3.7. A right adjoint U : D — Cis monadic if and only if
(i) every diagram e =3 e in D which under U extends to a split coequalizer in C has a colimit in D
which is preserved by U

(iz) U is conservative
There also exists a frequently stated s#fficient but not necessary condition for U to be monadic.

Definition 2.3.8. A pairof mapsf, g : A — Bis reflexive if there exists a common sections : B — A,

i.e. s such that fs = g5 = idp.

Theorem 2.3.9 (Crude Monadicity Theorem). A right adjoint U : ‘D — C is monadic if
(2) D has and U preserves coequalizers of reflexive pairs

(iz) U is conservative

Example 2.3.10. Barr-Beck may used to simplify the proof of various descent theorems in algebraic
geometry. Suppose that f : U — X is a faithfully flat, quasi-compact morphism of schemes. Then
we have an adjoint pair /* : QCoh(X) 2 QCoh(U) : f. and we claim that /™ is comonadic. For this
we verify the conditions of the crude monadicity theorem:

* £*is conservative since £ is faithfully flat.
y

* QCoh(X) is complete, so it has all equalizers. Moreover, f is flat so /™ preserves small limits.
Thus we get that /™ is comonadic so QCoh(X) = CoMod£, (QCoh(U)). Thus it remains to show
that CoMody+£, (QCoh(U)) is precisely descent data along f'. For this, consider the pullback

UxyU s U

P

U—— X

Let T = f*f. be our comonad. By flat base change we have that f*f, =~ (pr)).(pr,)* so T" =
(pry)«(pr,)*. Thus the datum of a 7-comodule isa F € QCoh(U) with a map F — (pr,).(pr,)*F,
which is equivalently a map (pr;)*F — (pr,)* T, subject to certain axioms. Finally, one checks that
after translating the axioms for ' — T'J to define a T-comodule to (pr;)*F — (pr,)*TF one gets

the standard cocycle condition for descent data.

Example 2.3.11. The forgetful functor U : cHaus — Setis monadic. Firstly, it has a left adjoint given
by Stone-Cech compactification. To show monadicity, we check the conditions of Theorem
Firstly, notice first that U is conservative since any bijection between compact Hausdorft spaces is a
homeomorphism. This follows from the fact that every continuous map between compact Hausdorff

spaces is automatically closed.
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For the second condition, notice that an equivalent way to describe a topology on a set X is to
given a closure operator (=) : P(X) — P(X) with satisfies 4 € 4 and1:4 = A. The corresponding
topology is then the one in which closed sets are given by the image of (-), upon which (-) simply
becomes the topological closure. A map f : X — Y between topological spaces is continuous if and
only if £(A) C f(A) for every 4 C X, and if X, ¥ are compact Hausdorff then every continuous
map is already closed. Thus for a compact Hausdorff spaces, a continuous map is a set theoretic map
[+ X — Y which commutes with the closure operator, i.c. f (A) :]@' This in hand, suppose that

X, Y are compact Hausdorff spaces and we have a split coequalizer

f h
X 3 Yy —Z
&S T
in Set. We may topologize Z by declaring that a subset 4 C Z is closed if and only if »™'(4) is
closed. Since split coequalizers are absolute, we still have a coequalizer after applying P and thus we

may construct the dashed arrow below:

!
PO == P(1) —= P(2)

|

|
L—) L—) =)

\I/

s
PA) =3 P(¥) —> P(2)

To see that this is a closure operator on P(2), if 4 C Z then

A =h(t(A)) = h(¢(4)) 2 h(¢(4)) = 4

and

A= b(t(A)) = h(r(A)) = h(e(d)) = 4.

From this, we see that Z can be turned into a topological space such that 4 is continuous and closed.
It follows that Z is compact Hausdorft since it is the surjection of a compact Hausdorft space by a
continuous, closed map. It then just remains to check that X =3 ¥ — Z is a coequalizer in cHaus,

which is not hard.
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3 Model categories

3.1 Motivation and localization of categories

Suppose we have a category C and a class of morphisms /7 that we want to invert, a classical example
being € = Top and W weak equivalences between topological spaces. The category C[ W ~!] formed
by freely inverting the morphisms in /7 should satisfy a universal property: There should exist a local-
ization map 7 : € — C[ W '] sending morphisms to I to isomorphisms such that for any category
D, the functors €[ 7 ~1] — D are in equivalence via pre-composition with 7 with functors € — D
sending the morphisms in 7 to isomorphisms in D.

For this localization to be reasonable, 17 should satisty certain weak conditions, similar to how

localization of rings in algebra require our localizing set to be closed under multiplication.

Definition 3.1.1. A category with weak equivalences (C, W) is a category C together with a collection
of morphisms 7 containing all isomorphisms and satistying the rwo-out-of-three property: Given a

commutative diagram

X;)Y

NA

zZ

in G, if any two of /; g, b belong to 177, then so does the third.

Remark 3.1.2. We do not lose any generality by enforcing the two-out-of-three condition and that we
contain all isomorphisms. Indeed, for any category D, the class of isomorphisms in D satisfy the two-
out-of-three condition. Thus if we look at the localization map 7 : € — C[ '], the morphisms
in C which get sent to isomorphisms €[ 17 ~1] will be a class W of morphisms containing /7 and all
isomorphisms satisfying the two-out-of-three condition and the induced map C[ w1 - e[w

coming from 7 will be an equivalence.

Let (€, 1) be a category with weak equivalences. An explicit construction of €[ W '] is given by
Gabriel and Zisman [g] as follows: In general weak equivalences will not have inverses so two objects

X, Y € € which become isomorphic in C[ 7 ~1] may only be related in € via a zig-zag

X > Z Z

~
AN

Z S Y

of weak equivalences. Thus the objects in €[ 177 7!] are the same as the objects of €, and morphisms
in C[ W '] are zig-zags of morphisms in € modulo equivalence where
* adjacent arrows pointing in the same direction may be composed

A w w w w .
* adjacent arrows «— - — or — - < labelled by a weak equivalence w may be removed
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¢ allidentity arrows pointing in either direction may be removed
The localization morphism € — €[ 17 ~1] is then given by the identity on objects and by sending a
morphism to the corresponding length one zig-zag.

This construction is difficult to work with in practice. Model categories introduce two auxiliary

collections of morphisms, called fibrations and cofibrations, which help give an alternative description
of C[W1].
3.2 Definition of a model category

We introduce some definition that are necessary for defining a model category.

Definition 3.2.1. Let € be a categoryandp : 4 — B,7: C — D morphisms in C. We say that 7 has
the left lifting property with respect to p, or equivalently that p has the right lifting property with respect

to 7, if for every commutative diagram

C—4
i V4
D——B
there exists a diagonal map
C—— 4
A
7 /// V4
D—— B

making the diagram commute.

Given two collections of maps S, 7" we say that S has the left lifting property with respect to T,
or equivalently that 7" has the right lifting property with respect to S, if every s € S has the left lifting
property with respect to every ¢ € 7.

Given a collection of maps F, write /(F) (write 7(F)) for the collection of all maps having the left

(right) lifting property with respect to every f* € F.

Definition 3.2.2. Let C be a category. An object U is a retract of an object X if there exists a commu-

tative diagram
idy

U—_tsxy 35U

We say that a morphism f/ : U — V' is a retract of a morphism g : X — Y ifitis a retract of ¢ in
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the category of morphisms, i.e. if there exists a commutative diagram

UL)V

Lo

do| X —25 7 |idy

v

Finally, we say that a collection F of morphisms in C is closed under retracts if any morphism f

which is a retract of some ¢ € F belongs to F.

For model categories, we want to be able to pick a distinguished subclass of objects in C to repre-
sent the objects of the localized category C[ 7 ~!]. For this, we need a robust way to factor arbitrary
morphisms through these such objects. The general tool we will use is the notion of a factorization

system.

Definition 3.2.3. Let C be a category. A factorization system in a pair (4, B) of collections of mor-
phisms in C satisfying the following properties:
(i) A4 and B are closed under retracts

(i) 4 € I(B) (equivalently B C »(A))

(ili) every morphism f in € can be written factorially as a composition f = pi where7 € Aandp € B

Remark 3.2.4. It turns out that in conjunction with (iii), assumptions (i) and (ii) in Definition|3.2.3]
are equivalent to 4 = /(B) (equivalently B = r(A)).

Remark 3.2.5. The condition that the factorization be functorial in Definition is potentially
non-standard, however since we are only using this definition for model categories where we want

functorial factorizations, we will make this assumption.
We are now ready to define a model category.

Definition 3.2.6. A model category is a locally small category with weak equivalences (€, 7) along
with two other classes of morphisms Fib and Cof satisfying the following axioms:

(i) € has all finite limits and colimits

(ii) (Cof, Fib N 177) and (Cof N ¥, Fib) are weak factorization systems
The morphisms in Fib and Cof are referred to as fzbrations and coftbrations respectively. The mor-

phisms in FibN 177 and Cof N 17" are referred to as trivial fibrations and trivial cofibrations respectively.
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Example 3.2.7. The canonical example one should have in mind is € = Top with the usual weak
equivalences, Serre fibrations as fibrations, and cofibrations “generated” by the boundary inclusions
S 1es D",

Since C has all finite limits and colimits, € has an initial object @ and a final object *. We say that
an object A4 is fibrant it the map A — * is a fibration and that 4 is cofibrant if the map 0 — Aisa

cofibration.
Proposition 3.2.8. The composition of two fibrations is a fibration, similarly for cofibrations.

Proof. We show this for fibrations. The proof for cofibrations is similar.
Letf : X — Yandg: ¥ — Z be two fibrations. By Remark[3.2.4] it suffices to show that g o f
has the right lifting property with respect to every trivial cofibration. Suppose we have a diagram of

solid arrows

A—3 X
A
7
/

S Y

i
S
1,7
B—— Z
where 7 is a trivial cofibration. Since g is a fibration, it the dashed arrow B — Y exists. Then since f

is a fibration the second dashed arrow exists making the diagram commute. Thus we’ve shown g o f

has the right lifting property with respect to any trivial cofibration. m]

Corollary 3.2.9. IfY is fibrant and X — Y isa fibration, then X is fibrant. Similarly, if X is cofibrant
and X — Y is a cofibration then Y is cofibrant.

Proof. 1t Y is fibrant, then ¥ — # is a fibration. Thus the composite X — Y — x* is a fibration by
Proposition3.2.8]so X is fibrant. Similarly for cofibrant objects. ]

Now, because we have functorial factorizations in a model category, we may functorially factor
the maps ) — X into a cofibration followed by a trivial fibration. That is, there exists a functor

Q : € — Cand anatural transformation Q = id such that
0D>X=0—-0X) =X

where Q(X) — X is a trivial fibration and 0 — Q(X) is a cofibration. In particular, we have that
Q(X) is cofibrant and X is weakly equivalent to Q(X). We call Q(X) a coftbrant replacement of X . In

a similar manner, there exists a ftbrant replacement functor.
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Proposition 3.2.10. Ler Q : C — Cand F : C — C be cofibrant and fibrant replacement functors,
respectively, as constructed above. Then FQ : C — Cand QF : € — € are both fibrant-cofibrant

replacement functors.

Proof. We have a factorization
0 cofib Q(F(X)) triv fib F(X)

Thus Q(F(X)) is weakly equivalent to £(X), which is weakly equivalent to X. Moreover, Q(F (X))
is cofibrant, but it is also fibrant by Corollary since F(X) is fibrant and we have a fibration
Q(F(X)) — F(X). The proof is similar for FQ. O

The benefit of model categories is that it will allow us to represent €[ 17 ~1] as a category formed
by identifying morphisms “up to homotopy” rather than having to present morphisms as zig-zags of
maps. In general, weakly equivalent objects may only have an equivalence going one direction. How-
ever, between weakly equivalent fibrant-cofibrant objects, we can always produce a weak equivalence

going both directions.

Proposition 3.2.01. Letf : X — Y be a weak equivalence between two fibrant-cofibrant objects. Then

there exists a weak equivalence Y — X.

Proof. Consider the factorization

A

triv ccy' Q

N &
X 7 Y.

By the two-out-of-three property for weak equivalences, we have that the map 4 — Y is also a weak
equivalence. Since Y is fibrant, so is 4, and since X is cofibrant, so is 4. Thus we have reduced to
showing that trivial fibrations and trivial cofibrations between fibrant-cofibrants have weak equiva-
lences going the other direction.

Suppose that f : X — Y is a trivial cofibration. Then the dashed arrow filling

7 jl

A/—>*

gives such an equivalence. A similar proof works for trivial fibrations. m]
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We will upgrade this proposition in the sequel after we have defined an appropriate notion of

homotopy between maps.

3.3 Homotopies and representations of the localization

In this section our goal is to use the model structure on a category € to abstract the notion of homo-

topy.
Definition 3.3.1. Let X € C. A ¢ylinder for X is a factorization of the form
id L id

yux 2 oy Ry

where 0y LI 0, is a cofibration and 7 is a weak equivalence.

A cocylinder for X is a factorization

(id,id)
X > X > X XX

where s is a weak equivalence and (d°, 4%) is a fibration.

Example 3.3.2. One should compare this with traditional topology. When € = Top with the standard
weak equivalences and Serre fibrations as fibrations, then ZX = [0, 1] x X and X! = Map([0, 1], X)
are cyclinders and cocylinders of X where X 11 X LN [0,1] X X is the inclusion of the copies
{0} X X and {1} X X of X, and Map([0, 1], X) % X X X is evaluation at 0 and 1.
Definition 3.3.3. Let fo, /i : 4 — X be morphisms.

* A left homotopy from f; to fi is a morphims b : 4 — X such that b9y = f; and ho; = f1.

* A right homotopy from f; to fi is a morphism » : 4 — X7 such that d°h = f and d'h = £,.

A priori, the existence of a right homotopy is independent of the existence of a left homotopy.
Additionally, it also appears that the choice of cylinder and cocylinder matters when deciding whether

there exists a homotopy with that domain or codomain. In nice scenarios, both of these issues go away.

Lemma 3.3.4. Let fo, i : A — X be maps with 4 cofibrant and X fibrant. The following are equiva-
lent:

(z) Then there exists a left homotopy from f to fi.
(iz) There exists a right homotopy from [y to fi.
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(111) For any cylinder 14 of A, there exists a left homotopy from fy to fi with domain IA.
(iv) For any cocylinder X' of X, there exists a right homotopy from fy to fi with codomain X'.

Proof. See [4, Lemma 2.2.12]. O

In the setting of Lemma we will simply say that f is homotopic to f; if £y is left (equiv. right)

homotopic to f;.

Lemma 3.3.5. Let A be cofibrant and X be fibrant. Then the relation ~ on Home (A4, X) given by fo = fi
if and only if fo is homotopic to fi is an equivalence relation.

Proof. We have that / = fviasf : 4 — X! where s is an in the definition of a cocylinder for X.
Now, suppose that fo = f; via b : 4 — X and the cylinder

idIlid

Alg 210y 2 X4 (3.3.1)

Then
idITid

AﬂAmA

[

is still a cylinder of 4 since 01 11 9y is the cofibration dy LI 8 composed with the isomorphism which
swaps factors of 4 11 4, and all isomorphisms are trivial fibrations and trivial cofibrations. Now, with
respect to this cylinder » gives a homotopy fi = fo.

Finally, suppose fo =~ fi and i =~ f;. Fix a cylinder as in and let by : I4 — X and
by : I4 — X witness fo = fi and f; = f, respectively. Now form a pushout diagram

4214

L

43714

which morally represents gluing two copies of 4 to each other along {1} X 4 and {0} X 4. Then

there exists a unique map ¢’ : I’4 — A such thato’s; = ¢4y = . We then claim that

(idid)

4

is a cylinder. If so we are done as the map #’ : I’4A — X defined by »'7y = by and b'#; = by defines
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a homotopy fo = f>. For this, notice that 9y and 0; are trivial cofibrations. Thus 7y and 7; are trivial
cofibrations so ¢’ is a weak equivalence by the two-out-of-three property. To show that 70y I 7,0

is a cofibration we have a diagram

Ad— s qu4q 2"y

100 7,
A — A4 22" 1'4
where the outer and left-most squares are coCartesian. Thus the right-most square is coCartesian
s0 700y L1 7 is a cofibration as dy LI 9 is. Thus composing with the cofibration id I19; we see that

i00p LI 710, is a cofibration. O

Definition 3.3.6. Given A cofibrant and X fibrant, write [4, X|] = Home(4, X)/~ for the mor-
phisms 4 — X up to homotopy.

Let C, denote the full subcategory of € spanned by cofibrant objects and let C¢ denote the full
subcategory of € spanned by fibrant objects. Right homotopies are compatible with composition on

the right and left homotopies are compatible with composition on the left, and thus we get a functor
[-—]:CF x Cr — Set.

We are now ready to present the two primary theorems on how model categories give us a handle

on C[W1].

Definition 3.3.7. A morphisms /' : X — Y is a homotopy equivalence if there exists a morphism
¢:Y — Xsuchthat fg ~ idy and gf ~ idy.

Theorem 3.3.8 (Categorical Whitehead). Let f : X — Y be a weak equivalence between two fibrant-
coftbrant objects. Then f is a homotopy equivalence.

Proof. Following the steps of Proposition[3.2.11} we see that it suffices to prove the theorem for trivial
fibrations and trivial cofibrations. We do the case of trivial cofibrations as the other case is dual.

Again following the proof of Proposition 3.2.11}, we in fact have a genuine left inverse g : ¥ — X
of f. Thus it suffices to show that fg ~ idy. Consider then a cocylinder

do, dl

y — 5y LY yoy
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Then we have a filler

XJ—f)YI

/>(
. h .7 0 1
triv cof |/ s fib| (d°,d")

//:d
y 20y y

and 4 is a homotopy f¢ =~ idy as required. ]

Example 3.3.9. When € = Top in the standard model structure, i.e. with weak equivalences and Serre
fibrations, CW complexes are fibrant-cofibrant. Thus in this example Whitehead’s theorem becomes

a special case of Theoremm

Theorem 3.3.10. Let Cr denote the full subcategory of € spanned by fibrant-cofibrant objects. Denote by
w(Cyr) the category whose objects are the same as Cop and whose morphisms are given by Homy e, (X, Y) =
(X, Y. Then the following hold:

(i) Let F : C — Cy denote a fibrant-cofibrant replacement functor. Then the composite € 5 Cor —
7(Cy) is a localization € — C[ w1.

(i7) The inclusion Cor C € induces an equivalence m(C,r) = C[ w1

Proof (Sketch). For (i), let 7 : € kil Cs — m(Cy). By Theorem [3.3.8) we have that 7 sends weak

equivalences to isomorphisms. Thus it just remains to check the universal property for 7.

Let G : € — D be a functor which sends weak equivalences to isomorphisms. We have a natural
transformation id = F such that each X — F(X) is a weak equivalence. Composing with G, we
find that G = GF = G|¢ oL Thus we get that G factors through F.

Next, suppose f, ¢ : X — Y with f* ~ g viaa homotopy b : IX — Y. Letting y, 0; and ¢ be as

in Deﬁntion then o0y = id = ¢0;. Since ¢ is a weak equivalence, Go is an isomorphism so
Go o Ga() =Goo G(‘)l - GC?() = Gal

Thus
Gf = Gho Gdy = Gho GO, = Gg

so Gle,, factors through C;r — 7(C). In total, G factors through the composite 7 : € 5 Cor —
7(Cyr). It is then easy to check that this construction shows that pre-composition with 7 gives an
equivalence between functors 7(Cr) — D and functors € — D sending weak equivalences to
isomorphisms.

(ii) follows from (i). O
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Remark 3.3.1v. (i) in Theorem|3.3.10]holds even without functorial factorization systems. For details
on this, see [7].

3.4 Derived functors

3.4.1 Kan extensions

In this section we introduce a foundational concept in category theory which will be of special interest
for us when studying localized categories.

Suppose we have a functor ' : € — D and another functor K : € — €’. What is the universal
way to “extend” F to €” along K? If K is an inclusion, this is motivated by wanting an actual extension
of F to €', though for more general K we are asking for a universal way factor F* through K. There

are two ways to formalize this question which we present now.

Definition 3.4.1. Let F: € = Dand K : € — C’ be functors. A left Kan extension of F along K is

adiagram
e £ s D
x UV A(F)
el

commuting only up to the natural transformation 7 that is universal among all such diagrams, i.e.

given another we can write

e r s D €
x‘ﬂg/ - K
o

A right Kan extension of F along K is a diagram

e i >
x /”;7 Rang (F)
e’

S
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commuting up to ¢ that is universal among all such diagrams, i.e. given another we can write

NeA - SE

Despite being defined by a universal property, Kan extensions are somewhat misbehaved. In fact,

evenif K : € < € is an inclusion, then a Kan extension if it exists may not be an extension and vice
versa, i.e. we do not necessarily have that Lang () o K = F or Rang (F) o K = F.
To get a better behaved theory, it is nice to enforce that our Kan extensions be preserved under

certain functors.

Definition 3.4.2. Let G : D — € be a functor. We say that a left Kan extension

e £ s D
h ﬂv ) (3.4.1)
e/

is preserved under G if the composite diagram

e r svp—S ve @ or y €
x b A(F) - K Jor GLang (F)
e’ e’

is still a left Kan extension. Similarly for right Kan extensions.
Given a functor G : D°P — & (ie. a contravariant functor D — &), we say that a left Kan

extension as in (3.4.1) is preserved by G if the right Kan extension

eop FOP > IDOP
op

< T Lang (F)°P
(€er)ep

induced by is preserved by G. Similarly for right Kan extensions.

Definition 3.4.3. We say that a right Kan extension of F : € — D is pointwise if it is preserved by all
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representable functors Homq (d, —). We say that a left Kan extension of F : € — D is pointwise if it
preserved by all corepresentable functors Homp (=, 4).

We say that a Kan extension is absolute if it is preserved by all functors.

In the pointwise setting, Kan extensions are well behaved. Indeed, at least up to isomorphism,
pointwise Kan extensions along fully faithful inclusions are indeed extensions and pointwise Kan ex-

tensions are commuted via limits and colimits. For details on this see [1a].

3.4.2 Derived functors

We now return to a discussion of model categories. Let (€, 17) be a category with weak equivalences.
We will sometimes write Ho(€) in place of €[ W '] and refer to Ho(C) as the homotopy category of
C.

Suppose we have an arbitrary functor ' : € — D between two categories with weak equiva-
lences. We may ask: What is the universal homotopy invariant functor associated to /2 One way to
formalize this is by asking for the left (right) Kan extension of € Lo Ho(D) along € — Ho(C).

Pictorially, we are considering the diagram

> Ho(D)

NPt

Ho(€)

Definition 3.4.4. Let /' : € — D be a functor between two categories with weak equivalences.
The left derived functor of F, denoted LF, is the right Kan extension of C Lo Ho(D) along
€ — Ho(D).

The right derived functor of F, denoted RF, is the left Kan extension of C 595 Ho(D)
along ¢ — Ho(D).

It turns out that by enforcing factorial factorizations in our model categories, left and right derived
functors have particularly simple forms in many common scenarios. In fact, in these scenarios, they
even have lifts to functors € — D (note that every functor Ho(€) — Ho(D) hasalift to ¢ —

Ho(D) but it should be surprising that there exists a lift along D — Ho(D)).

Theorem 3.4.5. Let F : C — D be a functor between categories with weak equivalences and let 9
D — Ho(D) be localization.

(z) Suppose that F sends trivial coftbrations between cofibrant objects to weak equivalences. Then if Q :
C — C s a cofibrant replacement functor, the functor 0FQ : € — Ho(D) descends to a morphism
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OFQ : Ho(C) — Ho(D) which is an absolute right Kan extension of OF along € — Ho(C). In
particular, LF = 0FQ.

(11) Suppose that F sends trivial fibrations between fibrant objects to weak equivalences. Then if R :
C — Cisa fibrant replacement functor, the functor OFR : C — Ho(D) descends to a morphism
OFR : Ho(C) — Ho(D) which is an absolute left Kan extension of OF along C — Ho(C). In
particular, RF = dFR.

Proof. We prove (i) as (ii) is dual. Let Q be a cofibrant replacement functor. Then since factorizations
are functorial we get a natural transformation ¢ : Q = id such that gy : QX — X is a weak

equivalence for all X. Thus given a weak equivalence X N , the diagram

QY — QY

R

X;)Y

shows that QX — QY is a weak equivalence by the two-out-of-three property.

Now, a consequence of Ken Brown’s lemma (Theorem|3.4.6) which we state below is that F pre-
serves all weak equivalences between cofibrant objects not just trivial cofibrations. Thus we see that
FQ sends weak equivalences to weak equivalences, and hence dFQ descends to a map FQ : Ho(C) —
Ho(D). We then claim that (0FQ, dFg : dFQ = JF) is a right Kan extension. For this, suppose that
we have a functor Ho(C) — Ho(D) which is induced by a functor L : € — Ho(D) with a nat-
ural transformation ¢ : L = dF. Because L sends weak equivalences to isomorphisms we have that
Lg : LQ = L is a natural isomorphism. Thus we have a factoring

Lg)~! 0
L(q) LQ Q

OFQ ==L oF

4

of ¢ through dFg which one checks is unique.

To see that this extension is absolute, suppose we have another functor # : Ho(D) — €. Then
applying (i) to the functor C KR Ho(D) Z, € where the weak equivalences of € are isomorphisms,
we find that (HOFQ, HoFg : HOFQ = HOF) is a right Kan extension, as required. ]

We now state the theorem that was mentioned in the above proof.

Theorem 3.4.6 (Ken Brown’s Lemma). Let F : C — D be a morphisms between two categories

with weak equivalences. If F sends trivial cofibrations (trivial fibrations) between cofibrant (fibrant)
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objects to weak equivalences, then F sends all weak equivalences between coftbrant (fibrant) objects to weak

equivalences.
Proof. See 4, Proposition 2.2.7]. |

Thus we see that in the setting of Theorem derived functors have lifts, i.e. we can always build

a commutative diagram
F
C——D

l l

HO(G) m HO(D)

We also have a corollary coming from the construction of these derived functors.

Corollary 3.4.7. Let F : C — Dand G : D — & send trivial cofibrations (trivial fibrations) between
coftbrant (fibrant) objects to weak equivalences. Moreover, suppose that F preserves cofibrant (fibrant)
objects. Then the canonical comparison LG o LF = L(G o F) (resp. R(G o F) = RG o RF)isa

natural isomorphism.

3.5 Relation to homological algebra

We now explain the relation of the general theory of model categories to the some standard procedures
in homological algebra. In homological algebra, one often deals with chain complexes of R-modules
and computes derived functors by taking injective or projective resolutions. Let A = R—Mod denote
the category of R-modules for some commutative ring R. There exists two standard model structures

relevant to homological algebra which we state below.

Theorem 3.5.1. There exists a model structure on Chso(A), the non-negatively supported chain com-
plexes of R-modules, such that

* the weak equivalences are quasi-isomorphisms

* the fibrations are maps which are epimorphisms in each positive degree

* the cofibrations are maps which are monomorphisms with projective cokernel in each degree

called the projective model structure.

Theorem 3.5.2. There exists a model structure on Ch=° (A), the non-negatively supported cochain com-
plexes of R-modules, such that

* the weak equivalences are quasi-isomorphisms

* the cofibrations are maps which are monomorphisms in each positive degree

* the fibrations are maps which are epimorphisms with injective kernel in each degree

called the injective model structure.
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Itis clear that in the injective model structure the fibrant objects are those complexes whose terms
are injective modules, and the cofibrant objects in the projective model structure are those complexes

whose terms are projective models.

Proposition 3.5.3. Let F : A — B bean additive functor between module categories. Then F induces a
map Ch=°(F) : Ch>°(A) — Ch=°(B) which sends weak equivalences between fibrant objects to weak
equivalences in the injective model structure. Similarly, Chzo(F) : Chxo(A) — Chxo(B) sends weak

equivalences between coftbrant objects to weak equivalences in the projective model structure.

Proof. 1f I°® and J* are fibrant, i.e. complexes of injective objects, then any quasi-isomorphism f* :
I* — J*isinfactahomotopy equivalence and thus preserved by F. Similarly for the projective model

structure. m}

It follows that taking injective resolutions and projective resolutions then applying F is simply
computing the right and left derived functors of the extension of F to (co)chain complexes in the
respective model category by Theorem[3.4.s} The usual reason for assuming left exactness before taking

right derived functors is to ensure that
H°(RF) =F

and similarly the usual assumption of right exactness before taking left derived functors is to ensure
that
Hy(LF) = F

even though the above shows that left/right exactness is not necessary for the existence of derived func-

tors.

4 Basics of co-categories

In category theory, we have objects and morphisms. However, in many examples there exists a natural
notion of “morphisms between morphisms.” The most basic instance of this is the category of all cate-
gories Cat. Here the objects are (small) categories, the 1-morphisms are functors, and the 2-morphisms
are natural transformations between functors, and the hierarchy stops here. In theory, however, we
could have 3-morphisms between these 2-morphisms, 4-morphisms between these 3-morphisms and
so on. Making what we mean by this rigorous is somewhat of a difficult task. One potential route is

to define a notion of an z-category inductively.

Definition 4.0.1. A (strict) #-category is defined inductively as follows:
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* A l-category is a regular category.
* An n-category is a category enriched over (7 — 1)-categories, i.c. a category C such that for any

two objects 4, B € €, the collection of maps between them Home (4, B) is an (7 —1)-category.

Example 4.0.2. The category Cat of all (1-)categories is a 2-category. Indeed, given two categories
C, D € Cat, the collection of maps between them is naturally the 1-category Fun(C, D) of functors

€ — D with natural transformations between them.

Example 4.0.3. We could turn the category Top of topological spaces into a 2-category where the
1-category Hom (X, Y') has objects continuous maps X — Y and morphisms as homotopies between
such maps. Allowing homotopies between homotopies, and so on, one could turn Top into an #-

category for any 7.

A fundamental issue with Deﬁnitionis that » must be finite—it does not give an answer as
to how to define a category with £-morphisms for any # € N nor is there an obvious fix to this. The
theory of co-categories gives a rigorous way to let # — oo in Definition as well as the tools to

organize all the extra structure that comes with such an object.

4.1 Simplicial models

It turns out that the best way to represent co-categories is as simplicial sets. This method was first
proposed and explored by Joyal and then later popularized and further developed by Lurie. In this

section we discuss this approach.

4.1 Simplicial sets and the nerve of a category

Definition 4.x.x. The simplex category A is the category whose objects are non-empty finite totally

ordered sets and whose morphisms are (non-strict) order preserving maps.
It turns out that up to equivalence we can write down a very explicit description of A.

Proposition 4.1.2. Let A’ be the category described as follows.
o The objects of A" are the finite ordered sets [n] = {0 <1< --- <n} forn € N.
o The morphisms of N are generated by, i.e. finite compositions of, the following morphisms
— the face maps 3" where 3" : [n — 1] — [n] be the unique order preserving morphism whose

image excludesi, i =0,...,n
— thedegeneracy maps o wherea!" : [n] — [n—1] isthe surjection with 7" (¢) = o (i +1) =

5,1=0,...,n—1
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subject to the following relations

n+l 7 _ g+l 7 . .
31' ° a\] - 5]’+1 ° 51. z S.]
n n+l _ »n n+1 . .
g 00, =0; 00, 1]

7 n—1 ; ;

gz‘oo}—l <]
+_ ). T

g/ 00" =1id i=jori=j+1

oo 0}4—1 Jj+l<i

Then the inclusion N' — A is an equivalence.

As a consequence of this proposition, when defining functors out of A or A°?, we only need to
define the image of [#] for each » € N as well as the face and degeneracy maps (subject to certain

relations).
Definition 4.1.3. A simplicial set is a functor X : A% — Set.

In light of Proposition[4.1.2} we can represent a simplicial set by a diagram

X Xy

where X, denotes X ([2]) and are referred to as the n-simplices of X and the right facing arrows repre-
sent the face maps, i.e. the duals of 9”’s, and the left facing arrows represent the degeneracy maps, i.e.
the duals of ¢7*’s. Often, however, we will leave the degeneracy maps implicit and write simplicial sets

as a diagram
P DAt

With simplicial sets now defined, we move on to how to view a category as a simplicial set. Let C
be a (small) category and denote by €y and €; the set of all objects of € and the set of all morphisms

of C, respectively. We have two natural maps
f €3

where /(4 — B) = A picks out the domain and /(4 — B) = B picks out the codomain. We also
have amaps : €y — € given by s(4) = id4. The simplicial set conditions on face and degeneracy
maps between zero and one simplices exactly demand that 7s = id and f5 = id, which in this case is
true since s(A4) =idy : 4 — A.

Thus given a category €, we have built the zero and one simplices that form the start of a simplicial

set, and the conditions on face and degenercy maps assert the existence of an endomorphism for each
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object (which will later be forced to satisty the identity morphisms axioms). However, we still have
not managed to capture the composition in €. For this, we let C; be the set of all length two chains of

composable morphisms, i.c.

& =UbBScifgecy

This comes with three maps C;: one that picks out f, one that picks out g and finally one that picks
out the composition g o £. Visually, €, represents two simplices in a simplicial set we are building and

we should think of the three edges as /, gand g o £ i.e.

B
f g
A gof C

Philosophically, the existence of this 2-simplex witnesses that the 1-simplex g o £ € € is a composition

of the two 1-simplices £, ¢ € €;. We can also construct two degenerate 2-simplices out of an edge
f : 4 — Bas follows:

(4.1.1)

which gives us two degeneracy maps €; =3 €,. From this discussion, we are able to extend our sim-

plicial diagram to include 2-simplices, i.e.
6= ¢ == @ (4.1.2)

and the fact that the face and degeneracy maps for 2-simplices satisfy the required relations is exactly
saying that our identities given by the degeneracy map Cy — Cj satisty the identity axioms, i.e. f oid =
fandid of = f. This can also been seen visually via the existence of the two degenerate 2-simplices in
(4.1.1)).
Now, following the philosophy above, compositions are witnessed by the existence of certain 2-

simplices. That is, every 2-simplex witnesses some composition. Thus, our ability to compose any

35



two compatible morphisms is not encoded simply in the structure of face and degeneracy maps in
simplicial sets, but rather in an statement expressing that we have “sufficiently many” 2-simplices. In

fact, in this specific scenario we have that
G = €y Xg, €1 (4.13)

where the two maps to Cy defining this fibre product are 7, £. It is which tells us that compo-
sitions exist as says that for any two morphisms with compatible codomain and domain, there
exists a unigque 2—simplex witnessing their composition.

From and the above discussion, we see that in factencodes all the information needed
to fully recover our category C. The fact that we can recover € using a truncated simplicial diagramis a
shadow of the fact that there exists only objects and morphisms, and no higher morphisms. However,
to put it on equal footing with the theory we will come to develop, it is beneficial to extend to

a full simplicial set. To do this we make the following definition:

Definition 4.1.4. Let C be a (small) category. Let €y denote the set of objects of C and forall » > 1

let C,, denote the set of length 7 chains of composable morphisms, i.c.

Gn:{Ao f—l>A1f—2>"'An_1f—”>An :ﬁ,...,ﬂeel}.

The nerve of €, denoted N'(C), is the simplicial set
=== ==

where the face maps are given composing adjacent morphisms in a chain, and the degeneracy maps are

given by inserting an identity morphism at different positions into the chain.

A tedious exercise is combinatorics shows that N (C) is indeed a simplicial set, and it turns out

that we can identify exactly which simplicial sets arise as the nerve of a category.

Theorem 4.1.5. Let X be a simplicial set. Then X is isomorphic to the nerve of a category if and only if
it satisfies the Segal condition: for all n > 1

X, =X XXOXI XXy * XXOXI

7 times

via the natural induced maps coming from the face maps X, — Xy picking out the n different edges of

an n-simplex.
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Proof. From the definition of N'(€), if X = N(C) for some C then it is clear that the segal condition
holds.

Conversely, suppose that X satisfies the Segal condition. Then we may define a category € whose
objects are given by X and whose morphisms are given by X; where the two face maps 7 f : X; =3 X,
pick out the domain and codomain of a morphism respectively. The Segal condition X5 = Xj Xy, X,
tells us that for any two morphisms f : x — yandg : y — =z, there exists a unique 2-simplex
corresponding to this pair. We define the composition g o £ in C to be the third edge of this unique
2-simplex. Moreover, we may define the identity morphism of an object x € Xy = € as the image of
the degeneracy map Xy — X;. The simplicial set conditions then imply that C is indeed a category.

Finally, by definition of the nerve and construction of C, we get an induced map X — N(C). The

Segal condition on X, for # > 2 then tells us that this induced map is indeed an isomorphism. m]

Thus we have succeeded in viewing categories as special kinds of simplicial sets X, where via the
Segal condition all higher simplices X, are determined by the zero and one simplices. To define co-
categories we will broaden the scope of which simplicial sets we consider and make use of higher sim-

plices to represent higher morphisms.

4.1.2  oco-categories as simplicial sets

Let X : A°? — Set be a simplicial set. We want to generalize our intuition from the previous section
of constructing nerves of categories to decide a reasonable restriction on X to where it makes sense to
refer to elements of X, as n-morphisms. From the existence of identities as well as composition
(if it exists) behaving as expected is already encoded in the face and degeneracy relations defining a
simplicial set. Thus the only concern is the existence of compositions which is statement about X
having sufliciently many z-simplices for all » > 2.

Let us first consider the case of existence of compositions of 1-morphisms. From a2-simplex

witnesses that 4 is a composition of / and g. Thus the question of whether we can compose any two
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compatible 1-morphisms boils down to the following question: Does every map

1
/\ )
0 2

of simplicial sets extend to a map

1
AA T
0 2

Note that it is important that we are removing the edge opposite the vertex 1 in (4.1.4), as asking for a

(4.1.4)

filler to a map

would be asking for a morphism f such that g o f = b, which of course need not always exists. Indeed,
if b = id then this is asking for a right inverse to g. Similarly if we were to ask for fillers to maps of the
triangle with the edge opposite the vertex 2 removed.

To encapsulate the domains we wish to have fillers of we make the following definition.

Definition 4.1.6. The k-th born of the n-simplex for 0 < k < », denoted A}, is the simplicial set

given by removing the face opposite the k-th vertex in dA”.

The condition that I-morphisms have compositions in X in then expressed by that statement that
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every map Af — X for 0 < 7 < 2 has an extension to a map A*> — X, i.e. a dashed morphism in

A2 —— A?

exists making the diagram commute. Note, however, the existence of such an extension is not assumed
to be unique. That is, we are only asking that compositions exist, not that they are unique. In the
special case of N(C) we saw that they both exist and are unique thanks to the Segal condition, but
this is a condition that it turns out is better to relax.

Generalizing to higher dimensional simplices, the correct formulation that z-morphisms have

compositions ends up being that all nner horns, i.e. A for 0 < 7 < n, extend to z-simplices.

Definition 4.r.7. An co-category is a simplicial set X such that every map A? — X for0 <7 < n

extends to a map A” — X.

If we enforce that outer horns should also have fillings then we get an co-categorical notion of a

groupoid, since we saw that fillings of outer horns correspond to the existence of left and right inverses.

Definition 4.1.8. A Kan complex or co-groupoid is a simplicial set X such that every map A? — X

for 0 <7 < nextends to amap A” — X.

A good way of producing Kan complexes is as follows: Given a topological space X we may pro-
duce the simplicial set Sing X whose 7 simplices are given by continuous maps A” — X, where here

by A" we mean the topological 7 simplex
A” = {(le-..,Un) € R;O o4+, :1}’

and face maps are given by restriction to corresponding face and degeneracy maps are given by precom-
position with collapsing maps. Then one may show that Sing X is a Kan complex. On the other hand,
given a Kan complex K we may build a topological space via geometric realization | - | which is the
unique colimit preserving functor such that |A”| = A”, i.e. we build a topological space | K| by gluing
topological simplices via the manner prescribed by K. One may then should that this gives an equiva-
lence between the theory of co-groupoids and topological spaces. The homotopy hypothesis posits that
any meaningful theory of co-categories should have it such that co-groupoids correspond to topolog-

ical spaces, something that is verifiable as a theorem in the simplicial set model for co-categories.
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4.1.3 Homotopic maps in co-categories

As mentioned at the end of the previous section, we can represent co-categories as simplicial sets C
such that maps from inner horns can be filled to #-simplices. However, this requirement is only for
compositions to exzst, not to be unique. It turns out that we can define a notion of homotopy in an co-

category, and then the correct uniqueness statement is that compositions are unique up to homotopy.

Definition 4.1.9. Let Cbe an co-category. We say that / € € is left homotopic to ¢ € € if there exists

a 2-simplex

g

Similarly, we say that £ is ight homotopic to g if there exists a 2-simplex

in C.

It turns out that these a priori different definitions are in fact equivalent via our ability to compose

2-morphisms.
Proposition 4.1.10. [ s left homotopic to g if and only if f is right homotopic to g.

Proof. Suppose we have a left homotopy from £ to g given by a 2-simplex o. Then we may consider

the inner horn A3 given by
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If we fill this to a 3-simplex then extract the face opposite the vertex 2, we get a right homotopy from
ftog.
A similar diagram shows the other direction. Note that we cannot use the exact some diagram as

above, however, as we would be asking for a filler to an outer horn AS. m]

Inlight of Proposition we simply say that £ is homotopic to g if there exists aleft (equiv. right)

homotopy from f to g. Via similar arguments to the above, one may show the following proposition.

Proposition 4.1.1x. The relation = given by homotopy is an equivalence relation. Moreover, given any

two composable morphisms f, g € Cy, any two compositions of f and g are homotopic.
In light of this proposition, we make the following definition.

Definition 4.r.12. For € an co-category, define the ordinary category < (C), also sometimes denoted
Ho(C) and called the homotopy category of C, to be the category whose objects are the same as those
of € and whose morphisms are morphisms of € modulo homotopy. Composition is defined by any

choice of composition in €, which by Proposition[4.1.11]is independent of choice up to homotopy.

4.1.4 Relation to model categories

Suppose that we have a category with weak equivalences (C, 1#7). Then we may form the localized

1-category C|[ W 1] via its universal property. We can do the same procedure for co-categories.

Definition 4.1.13. Let C be an co-category. We say that a morphism f : 4 — Bin € is an equivalence

if it is an isomorphism in Ho(C), i.e. there exists some ¢ : B — A such that fg ~ idp and gf ~ id4.

Definition 4.1.14. Let C be an co-category and 77 a collection of morphisms in €. We say that a
tunctor 7 : € — D exhibits D as the localization of C ar W if for any co-category &, precomposition
with 7 induces a fully faithful embedding Fun(D, €) — Fun(C, £) whose essential image is functors

C — & sending morphisms in 7 to equivalences.

One may show that localizations always exist and are unique up to equivalence. Moreover, we

have the following not-too-hard to see result.

Theorem 4.1.15. Let C be an ordinary category with weak equivalences W. Then Ho(N (C)[W™]) ~
C[w1.

Thus co-categorical localizations freely turn weak equivalences into equivalences rather than iso-
morphisms, and we may recover the 1-categorical notion by further inverting all equivalences. One
nice feature of co-categories in this context, however, is that limits and colimits in N (€)[ '] cor-

respond to taking homotopy limits and colimits in €[ 7 ~!] after passing to the homotopy category.
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4.5 Rigidification and topological categories

When referring to literature on co-categories, one will sometimes see them referred to as (oo, 1)-categories.
This notation is meant to indicate that we have z-morphisms for all » € N, hence the 0o, and that #-
morphisms for # > 1 are invertible, at least up to (# + 1)-morphism.

This may be made formal by saying that given an co-category € and objects x, y € C, for a suitable
definition of Mapg («, ) we in fact have that Map («, y) is a Kan complex, i.e. an co-groupoid. Since
the objects of Map (; y) are morphisms and the higher morphisms are z-morphisms z > 2 in C, this
is saying that z-morphisms in C, » > 2, are invertible up to homotopy. Since co-groupoids are just
topological spaces, this suggests that potentially we could have defined co-categories as Top-enriched
ordinary categories. However, this a priori does not capture the same level of generality since a Top-
enriched category has a composition law which is defined “on the nose” whereas co-categories only
have a composition which is defined up to homotopy.

It turns out, however, that our choice of composition in an co-category is much more constrained

then just up to homotopy. It s in fact fully determined up to all choices of higher homotopy data:

Theorem 4.1.16 ([7, Corollary 2.3.2.2]). A simplicial set K is an co-category if and only if the restriction
Fun(A? K) — Fun(AZ K)

is a trivial Kan fibration.

For the purposes of our discussion, the meaning up “trivial Kan fibration” is not all too important—
it simply means that we have a contractible space of choices for our composition. Using this, it is in
fact possible to “rigify” any co-category to have an “on the nose” composition and thus truly be rep-
resented by a Top-enriched ordinary category. We won’t prove this, but we will show one direction of

how to produce an co-category from a topological (i.e. Top-enriched) category.

Definition 4.1.x7. A topological category is an ordinary category enriched in Top, i.e. a category €
such that each Home (4, B) is a topological space.

Remark 4.1.18. Via the singular complex and geometric realization, we may equivalently view a topo-

logical category as a category enriched in simplicial sets Seta.

We now wish to define the ropological nerve of a topological category. To do this we will define the
simplicial nerve Na(+) of a simplicial category, and the topological nerve of a topological category C
will simply be N (Sing €).

Let Catp denote the category of simplicial categories. Notice that we can turn every ordinary

category ‘D into a topological category, and hence a simplicial category, by letting the morphisms spaces
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be discrete topological spaces. Thus given an ordinary category C, we may view both [#] and € as

simplicial categories. Then, one way we could have defined the nerve of C is via

N(e)n = HomeatA([n]: (‘3) (4-1-5)

However, suppose that C comes with a non-discrete simplicial category structure. The goal is to still
use as a definition, but we should be using a “sufficiently derived” Hom in the definition. That
is, the homotopy theory of simplicial categories will end up modelling the theory of co-categories.
Thus should really be happening in some homotopy category of Catp where we’ve inverted
some notion of equivalence. When Cis a discrete simplicial category, (4.1.5)) ends up already computing

aderived Hom, but in general we should take a cofibrant replacement of [#] before applying Hom.

Definition 4.1.19 ([7, Definition 1.1.5.1]). Let / be a finite non-empty linearly ordered set. Define
C[A] as follows:
* The objects of € [A/] are the same as those of /
* Forij €/, then
N(Pz', ) Z S].
HOHIQ:[A/] (Z,J) = J
i<i
where P;; is the partially ordered set {/ C /N {37+ 1,...,7} : 4,7 € I}
* The composition Homg /(%) X Homga/)(j; k) = Homgx/ (% k) is induced by the map

Pz',j ><Pj,/e —> Pz}/e
(I, L) —— LU

of partially ordered sets.

This comes with a map €[A/] — J which is an equivalence of simplicial categories. The point
of €[A] in relation to ] is that we have forgotten compositions “on the nose” and instead remember
compositions up to coherent homotopy by replacing them with chains of composable morphisms. It
turns out that this assignment

A — Catp
J —— C[N]

is functorial and thus defines a cosimplicial object of Cata. Thus allows us to make the following

definition.

Definition 4.1.20. The simplicial nerve of a simplicial category C, denoted by Na(C) or simply
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N (C), is the simplicial set defined by
Homge, (A", Na(€)) = Homey, (€[A"], €).

Remark 4.1.21. Precomposition with the equivalence €[A”] — [#] gives a bijection Home,, (E[A”], C)
Homey, ([7], €) when C is a discrete simplicial category, so the simplicial nerve is a generalization of

the nerve of an ordinary category.

4.2 Limits and colimits

We now wish to introduce the basic notion of limits and colimits in an co-category. For this, we want
a homotopy invariant version of the classical notion. Since homotopy invariance is already built in
to the theory of co-categories, essentially any naive definition of limits and colimits will work. Before
doing this, however, we discuss what the correct notion should be from the perspective of topological
categories.

Let Cbea topological category and suppose we have adiagram /7 : D — €. Whateverlimgep F(d)

is meant to be, if it exists, its functor of points should satisfy
Map, (4, }Zn% F(d)) =~ holimgep Map, (4, F(d)).
€
By the Yoneda embedding this in fact classifies the object limep F(d) should it exist.

4.2 Definition via initial and terminal objects

Definition 4.2.1. Let € be an co-category. We say thatx € C is an znstial object if for every y € C,
Map, (s y) is contractible. Dually, we say x € C is a terminal (or final) object if for every y € C we
have that Map(y, x) is contractible.

To define a limit of a diagram p : K — C it will then suffice to define the join of two simplicial
sets. Then we can consider K™ = pt x K which will represent freely adjoining an initial object to K.
If we then define €/, to be the full subcategory of Fun (K™, €) of functors extending p, then the limit

may defined as an initial object of @/p.

Definition 4.2.2. Let.S and K be simplicial sets. The jozn of S and K, denoted S* K, is the simplicial
set given by

(S*xK)()= | | styxx)

J=Iur

where 7, I’ decompose / into a disjoint union such that 7 < 7’ forall 7 € 7,7" € I’. Moreover, we take
the convention that S(0) = K(0) = =.
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One should think of the join of two co-categories € and €’ as having objects ob € II ob €” and
morphisms
Home(4,B) A4,BeC
Home (A4, B) A, Be
* 4deCBel
0 AeC,BeC.

Homeyer (4, B) =

Fortunately, the join of two 0o0-categories remains a category.
Proposition 4.2.3 (Joyal). If C and C" are co-categories, then C % € is an oco-category.
We now may define limits and colimits in an arbitrary co-category.

Definition 4.2.4. For K asimplicial set, define K~ = pt * K and K~ = K * pt.
Given an co-category C and p : K — C, define C /p and (‘fp/ to be the full subcategories of
Fun(K*, €) and Fun(K™, €) respectively of functors which extend p.

Definition 4.2.5. Let € be an co-category and p : K — €. A limit of p is a final object of €/, and a

colimit of p is an initial object of Gp /-

Remark 4.2.6. Using the simplicial model for co-categories, we are able to define the limit and colimit
of any map p : K — C of simplicial sets, even when K is not necessarily an co-category. This a priori
appears to give a level of generality which is not present in other models for co-categories. However,
given any simplicial set K, we may find a categorical equivalence ¢ : D — K in the Joyal model
structure. We then have that the induced map (‘3}, ;= GM ; is still an equivalence, so colimg p exists if
and only if colimp p o g exists, in which case the canonical comparison map colimp pog — colimg p
is an equivalence. Thus we gain no loss in generality by restricting to colimits (and similarly limits)

over co-categories. It is, however, at times convenient to allow for more general diagrams.

4.2.2  Quillen’s Theorem A and B and co-categorical generalizations

It is often the case that various limit and colimit diagrams can be simplified to smaller ones. Take for
example the case of a diagram p : D — € where D happens to have a final object * € D. Then we
simply have that colimp p = p(*). Said differently, if 7 : * — D is the inclusion then the induced
map colim, p o 7 — colimyp p is an equivalence. The goal of cofinal morphisms is to study a general

class of morphisms 7 for which pulling back along 7 preserves colimits.

Definition 4.2.7. A morphism v : K’ — K of simplicial sets is cofznal if for every co-category € and

p : K — C, the induced morphism €, — €, is an equivalence.
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It is clear from the definition of cofinality and colimits that if v is cofinal, then colimg p exists if
and only if colimg~ p o v exists in which case the canonical map colimg» p o v — colimg p is an equiv-
alence. It turns out that this is also sufficient. In the theorem below we collect the various equivalent

conditions for cofinality.

Proposition 4.2.8 ([7, Proposition 4.1.1.8]). Let K, K” be simplicial sets and v : K' — K. Then the

Jfollowing are equivalent:

(1) viscofinal

(iz) For every oo-category Candp : K — C, if p : K® — C is a colimit of p then the induced map
P : K" — Cisacolimit of p o v

(iii) For any right fibration S — K of simplicial sets, the induced map Map (K, S) — Map (K, S)

isa /oomotopy eqm’wzlence

Theorem 4.2.9 ([7, Theorem 4.1.3.1]). Supposev : C — D with D an co-category. Then v is cofinal if
and only if C Xp Dp, is weakly contractible for every D € D.

The general framework of cofinal maps in the context of co-categories gives an alternate point of

view on Quillen’s Theorem A.
Proposition 4.2.30. A cofinal map S — T of simplicial sets is a weak homotopy equivalence.

Proof. Let K be any other simplicial set. Then we have that the induced map

MapsetA(Y] K) =Map, (LK xT)
— Map (S, K x T)
= MapsetA (:5; K)

Passing to the homotopy category of Seta (in the Kan—Quillen model structure) we see that S and T°

represent the same functor. Thus we see that ¢ is a homotopy equivalence. ]

Corollary 4.2.0x (Quillen’s Theorem A). Let F : C — D be a functor between ordinary categories
such that B(d | F) is contractible for every d € D. Then F induces a homotopy equivalence BC — BD.

Proof. For a category &, recall that BE = |IN(€)|. Thus the hypothesis precisely say that each N (d |
F) = N(C) Xn(py N (D), is weakly contractible. Thus by Theoremwe have that the induced
map F : N(€) — N(D) is cofinal, and hence a weak equivalence by Proposition That is, we
have that B€C = [N (C)| — [N(D)| = BD is a homotopy equivalence. |

For completeness, we also include the co-categorical generalization of Quillen’s Theorem B.
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Theorem 4.2.12 ([, Theorem s.3]). Let F : C — D be a morphism of co-categories such that for every
morphism X — Y in D, the induced map Y | F — X | F is a weak equivalence. Then for every X € D
the pullback square

X|F——¢C

Lk

=Dy, —— D
is homotopy Cartesian (in the Kan-Quillen model structure).

Remark 4.2.13. We have that Dy, ~ x is weakly contractible since it has an initial object.

4.3 Stable co-categories

Definition 4.3.1. Let C be an co-category. We say that C is poznted if it has an object which is both

terminal and final, denoted by 0.

When € is pointed, we have that 0 € Ho(C) is still both initial and final. Thus we get a unique
morphism X — Y in Ho(€) which factors through 0 and we denote this morphism by 0. Upstairs
in C,0 : X — Y is well defined up to homotopy.

Definition 4.3.2. Let C be a pointed co-category. A triangle in € is a diagram of the form

X —>7Y

l l (43.1)

0— Z

i.e.afunctor Al x Al — ©. We call this diagram a fiber sequence if it is a pullback, and a cofiber sequence

if it is a pushout.

One should be careful of what it means precisely to define a triangle. Indeed, it is not as simple
as giving a “commutative diagram” of the form (4.3.1) since the notion of commutativity is not even
well-defined in an co-category since compositions only exist up to homotopy. To state explicitly what

data specifies a triangle, recall that Al X Al has the simplicial set structure

with all higher dimensional simplices being degenerate. Thus the data of a triangle is

(i) A choice of zero object 0
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(if) Morphismsf: X = Y,¢:Y - Z,X — 0,0 > Z
(ili) A morphismb:X — Z

(iv) A 2-simplex
Y
N
—_—>
X 2 Z

witnessing 4 as a composite g © f

(v) A 2-simplex

witnessing a null homotopy of h.

Given a morphism ¢ : X — Y, we will write cofib(g) to denote a cofiber sequence

X
|
0—

and similarly we will write fib(g) to denote a fiber sequence arising from g.

(43:2)

N —

Remark 4.3.3. It may appear at first that the notation cofib(g) and fib(g) is poor since for each g we
are making a choice of triangle from a contractible space of such choices. It turns out, however, that
we may assume this assignment is functorial. Indeed, there is on a contractible space of zero objects,
followed by a contractible space of maps X — 0 and then finally a contractible space of colimits
forming the pushout. If we let CoFib denote the full subcategory of Fun(A! x Al, €) corresponding
to cofiber sequences, then the projection CoFib — Fun(Al, €) onto the top arrow (labelled ¢ in
(4.3.2)) is a Kan fibration which has fibers either empty or Kan complexes corresponding to whether
a cofiber of ¢ € Fun(Al, €) exists. In particular, if all cofibers exist in €, then CoFib — Fun(Al C) is
a trivial Kan fibration and hence has a section Fun(Al, €) — CoFib. In particular, when all cofibers

exist we may make a functorial assignment ¢ > cofib(g). The same is true for fiber sequences.

Definition 4.3.4. An co-category C is stable if
(i) Cispointed
(ii) all fibers and cofibers exist in C

(iii) a triangle is a cofiber sequence if and only if it is a fiber sequence.
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One should think of stable co-categories as the co-categorical generalization of triangulated cat-
egories. Formally, if € is an co-category, then one may show that the homotopy category Ho(C) is
a triangulated category. The benefit of stable co-categories is that being stable is a property of an co-
category, whereas being triangulated requires supplementing the data of distinguished triangles.

We now discuss how the triangulated structure of Ho(€) appears on the co-categorical level. In
particular, we first discuss where the shifts arise from. For this, let ©* denote the full subcategory of

Fun(A! x Al, €) spanned by cofiber sequences of the form

where 0 and 0” are zero objects. We then have a forgetful map €* — € given by evaluating at the
initial vertex. Provided all such pushouts exists, C* — Cis a trivial Kan fibration and hence has a
section C — CZ. Post-composing with projection to the terminal vertex we get a functor = : € — €

such that for every X we have a cofiber sequence

— 0

e

Dually one may consider fiber sequences and produce a functor  : € — Csitting in a fiber sequence

R

—

QY —— 0

L

00— X

If € is stable then € = €2 and ¥, Q are inverse equivalences. However, if € is just pointed then X is
only necessarily left adjoint to €.

If C is stable, then we may define shift functors X + X [n] for each n € Z via

> ifn>0
(=)[n] =
Q" ifn<O.

The truncation of this shift functor defines the shift functor on Ho(€) and we essentially call a triangle

X—->Y—>Z->X[1]
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in Ho(C) distinguished if it arises from a diagram

where both the smaller squares (and hence the outer square too) are pushouts.

~

N~

\
[

—zZ—>

4.4 Derived world revisited
4.4.1 t-structures

Suppose we have an abelian category A. We can then consider the category Ch(A) of chain complexes
in A. From Ch(A) we can in fact, after inverting quasi-equivalences, recover A as those chain com-
plexes C, such that /,(C,) = 0 forall 2 # 0. The goal of z-structures is to generalize the idea of being

“homologically concentrated in degree > 0” to any stable co-category.

Definition 4.4.1. Let T be a triangulated category. A ¢-structure on 7T is the data of two full subcate-
gories (T, T<o) such that

(i) if X € Tspand ¥ € T, then Hom(X, Y[-1]) =0

(i) T<o[-1] € T<oand T5o[1] € Txo

(ili) Forany X € 7T, there exists a fiber sequence Y — X — Y' with Y € Typand Y’ € T<o[-1].

In this context, we will write T, to denote T>o[z] and T<,, to denote T<o[]. Note that Txq
entirely determines T<_; and hence T<p = T<_;[1]. Indeed, an object Y belongs to T<_; if and only
if Hom(X, Y) = 0 forall X € T,. Condition (i) makes this as a necessary condition and (iii) shows

that it is sufficient.
Definition 4.4.2. Let € be a stable co-category. A ¢-structure on C is a t-structure on Ho(C).

Givenat-structure on €, we write Cx ¢ for the full subcategory of objects of € which liein Ho(C)x
after passing to the homotopy category. Similarly for C<. Animportant fact about #-structures is that

C<o C Cisareflexive subcategory, and dually C>¢ € C has a right adjoint.

Proposition 4.4.3 ([8, Proposition 1.2.1.5]). The inclusion C<o S C has a left adjoint. Dually, the

inclusion Cxo C C has a right adjoint.

As a consequence of this, we write 7<, : € — Cg, for the left adjoint to C<, € €, and 75, :
C — €y, for the right adjoint to >, C C. One may show that 7>, o 7<,, = 7<,, 0 7>, so may

unambiguously truncate objects into C<,, N €. Using this, we make the following definition.
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Definition 4.4.4. Let C be a stable co-category with #-structure. The beart of C, denoted €, is the
full subcategory C<o N Cx. Define 7y : € — €¥ tobe 759 0 7<g = 7<p 0 750 and 7, : € — €% to
be 7y o (=) [—n],ie. 7, X = 7o (X [—n]).

Note that C¥ is equivalent to an ordinary category, i.e. €” ~ N (Ho(C")). This is because for any

two X, Y € CY, we have thatforallz > 0

7, Map(X, Y) = 7oQ" Map(X, Y)
= 7 Map(X, ¥ [—n])
=0.

Hence the mapping spaces are discrete for any two objects in C”. It turns out that the stability of C
also implies that CY is abelian, so one may think of € as a derived enhancement of the ordinary abelian

category C7.

4.4.2 oco-fication of classical derived categories

In this section we discuss how one can view the usual derived categories in homological algebra as
0o-categories.
Let A be an abelian category. In homological algebra, one may form the right bounded derived

category D~ (A) as follows:

(i) Form the quotient category K~ (A) = Ch™ (A) /= given by taking all right bounded chain com-

plexes in A and identifying all chain homotopic maps
(ii) Form D~ (A) = K~ (A)[W '] by further inverting the set 17 of all quasi-isomorphisms.

It is a simple exercise to show that, up to equivalence of categories, step (i) is unnecessary. Indeed,
inverting all quasi-isomorphisms has the consequence of identifying maps which induce the same map
on homology, and homotopic maps indeed induce the same map on homology. Thus simply inverting
quasi-isomorphisms already has the effect of identifying homotopic maps. However, in the classical
story, it is convenient to first do (i) as it is easy to give K~ (A) a triangulated structure which is then
inherited by K~ (A)[ W 1], whereas directly giving a triangulated structure to Ch™ (A) [ 1] is
difficult.

Our goal in this section is to build a stable co-category D™ (A) whose homotopy category is the
classicial right bounded derived category with its natural z-structure. This may be achieved in two
steps. First, to replicate K~ (A), we need to build an oco-categorical model of Ch™(A) whose 2-

morphisms are chain homotopies, whose 3-morphisms are homotopies between homotopies, and so
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on, at which point passing to the homotopy category will have the effect of identifying homotopic
maps. After this, we need to invert quasi-isomorphisms in the co-categorical sense so as to make them
equivalences.

We first take on the task of encoding our notion of chain homotopies into an co-category whose

objects are those of Ch™ (A).

Definition 4.4.5. Let k£ be a commutative ring. A differential graded category over k is an (ordinary)
category C enriched over Ch(k).

Now, the inclusion Chso(k) € Ch(k) is a reflective subcategory with localization map 7>¢ :

Ch(k) — Chyx¢(k) given by sending

to

S Ay —25 4 By fer(dy) — 0.

This localization map is monoidal, so we may view every differential graded category over k as a cate-
gory enriched over Chy (), or by forgetting the £-module structure as enriched over Chx((Z). We
will later see in that there is a lax monoidal functor DK : Ch((Z) — Seta given by the Dold-
Kan correspondence. As such, every differential graded category over £ gives rise to a simplicial, or

equivalently topological, category. For later reference, we label the composite functor
K : Ch(Z) Z% Chso(Z) 25 Fun(A, Ab) — Seta (4.4.1)

as K.

Definition 4.4.6. Let C be a differential graded category (over k). The differential graded nerve of
C, denoted Nyg(€), is the simplicial (or topological) nerve of the associated simplicial category to € as

described above.

We now use this theory to construct an co-categorical enrichment of Ch™ (A) which includes
chain homotopies. Recall that Ch(.A) naturally comes with the structure of a differential graded cat-
egory as follows: Given two chain complexes 4, and B,, we need to build a mapping chain complex
Mapcy,a) (A, B,). For this, let

Mapcy, 4y (Ao, Be)n = l—[ Homy (4y, Byen)
PpEL
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and we define a differential £ : Mapcy, ) (Ao, Be)yn — Mapgy, ) (Ao, Ba)y—1by

(df)p(x) = d(fp(x)) = (=1)"fp-1(dx).

Note that the Map -, A) (Ae, Bs),, encodes arbitrary collections of maps (A4, — Bp+,), with no addi-
tional assumptions that, e.g., they commute with the differentials. However, the differentials encode

compatibility with the differentials of 4, and B,. Indeed, elements of
ker(d : Mapcy, ) (Ao Ba)o = Mapgy, 4) (Ao, Be)-1)
are precisely the chain maps 4, — B, and elements of
ker(d : Mapcy, (1) (Ae, Ba)1 — Mapgy, 4 (Ae, Ba)o)
are precisely chain maps 4y — Bet1. Moreover,
Ho(Mapgy, 1) (Ao, Ba)e) = ker(do) /im(dy)

is precisely the additive group of chain maps 4, — B, modulo chain homotopy. More generally,
H, (Mapch( A) (A, Bs)e) represents chain homotopy classes of maps 4q — Bay,. This structure
turns Ch(A) into a differential graded category, and hence also turns the full subcategories Ch™ (A)
and Ch*(A) of right and left bounded, respectively, chain complexes into differential graded cate-

gories.
Definition 4.4.7. Define K (A) = Nyg(Ch(A)), K~ (A) = Ngg(Ch™ (A)) and K*(A) = ng(Ch+ (A)).

Remark 4.4.8. This notation is consistent with the classical notation as Ho(K(A)) = Ch(A)/=

is the quotient category of Ch(A) modulo chain homotopy, per the discussion above. Similarly for
K~ (A)and K*(A).

Proposition 4.4.9. The category K(A) has all finite limits and colimits.

Proof. It suffices to exhibit an initial and terminal object, as well as show that pullbacks and pushouts
exist. For initial and final objects, we have that the zero complex is both initial and final. Indeed, given

a chain complex 4, we have that
Map e 4y(0, 4e) = K(Mapcy, 4,0, 4o)e) = K(0) = pt

is contractible (recall K is the composite (4.4.1)). Similarly, Map () (Ae, 0) is contractible.
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We now discuss how to construct pushouts. Suppose we have f : C — D, g : C — D’. We may

form a new chain complex C(f, ¢)s with
C(hg)n=D,®D,®C,4

with differential
Ad, d’,c) = (0d +f(c), dd’ — g(c), dc).

Morally, one should think of this as a pair of elements in D and D', along with an element of C wit-

nessing a homotopy between them. One may then build a diagram

7|

D' — C(f9)

which commutes up to homotopy and realizes C(f; ¢) as the pushout of C — D, C — D. Similarly
for pullbacks. o

This proof also shows that K (A) is pointed and upon working out an explicit model for pullbacks,
onelearns thatasquare in K (A) isa pullback if and only if itis a pushout. Assuch, we get the following

corollary.

Proposition 4.4.10. K(A) is stable (similarly for K~ (A) and K* (A)) and the induced triangulated
structure on Ho(K (A)) agrees with the classical one.

We have thus succeeded in the first portion of our goal which is to realize Ch(A) as a stable co-
category which remembers chain homotopies as higher morphisms. Now we need to invert quasi-
isomorphisms. This may be done in two ways: Either we take the Kan-Dwyer localization (c.f.
at the collection W of quasi-isomorphisms, i.e. K (A)[ W '], or we can “quotient” by the subcat-
egory of all complexes with zero homology. We can make this sort of quotienting formally in the

following manner.

Definition 4.4.11. Let Cbe astable co-category. A stable subcategoryis astable full subcategory D € €

such that the inclusion is exact (i.e. preserves finite limits and colimits).

Definition 4.4.12. Let € be a stable co-category and D C € a stable subcategory. Then the Verdier
quotient C/D is defined as the localization C[ W '] where I is the collection of all morphisms whose

cone liesin D.
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It a basic fact of Verdier quotients that the quotient is still stable.
Proposition 4.4.13. If C is a stable co-category and D C Cis a stable subcategory, then C[D is stable.
Proof. See [9, Theorem 1.3.3] for details. |

We are thus ready to make our definitions. Note that the subcategory N(A) € K(A) of all
chain complexes with zero homology is closed under shifts, fibers and cofibers, hence stable with exact

inclusion.

Definition 4.4.14. Define D(A) = K(A)/N(A), D~(A) = K- (A)/(N(A) N K~ (A)) and
D¥(A) =K*(A)/(N(A) NK*(A)).

Combining all the results up to this point, we conclude with the following theorem.

Theorem 4.4.35. D(A) is a stable co-category whose homotopy category agrees with the classical un-
bounded, triangulated derived category. The induced classical t-structure on D (A) issuch that D(A)° ~
A.

The analogous results bold for D~ (A) and D* (A).

We conclude this section with a discussion of the alternative approaches for constructing D(A).
Just like in the classical picture, we could of immediately started with Ch(A) and inverted quasi-
isomorphisms—making all quasi-isomorphisms equivalences already has the affect of accounting for

chain homotopies.

Theorem 4.4.16. There is a canonical equivalence N(Ch(A))[W 1] ~ D(A), where W is the col-

lection of all guasi-isomorphisms.
Proof. See [8, Theorem 1.3.4.4]. |

Similarly, if A has enough projectives or injectives, we get an alternative presentation of D™ (A)
and D*(A). One should think of this as being a consequence of the injective and projective model
structures on Ch™ (A) and Ch*(A) which allow us to view the localized category as a quotient cate-

gory of the subcategories of fibrant-cofibrant objects.

Theorem 4.4.17. (1) Suppose A hasenough projectives, then D™ (A) = Nyg(Ch™ (Aproj)) where Aproj C
A is the full subcategory of projective objects.

(1) Suppose A has enough injectives, then D*(A) = ng(ChJr (Ainj)) where Ainj © A is the full
subcategory of injective objects.
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4.4.3 The Dold—Kan correspondence

In classical homological algebra, the way we “derive” or “triangulate” an abelian category A is by con-
sidering chain complexes valued in A. However, when C is some not-necessarily-abelian category, we
need a different approach to “triangulate” €. The modern approach towards doing this is by using
simplicial techniques, and Dold-Kan gives a correspondence between this approach and the chain
complex approach in the abelian case.

The motivating example of this correspondence is from topology. Let X be a topological space.

Then we may construct the singular simplicial set Sing X by letting
(SingX)n = HomTop (A”, X),

where here A” = {(vy,...,v,) € R, : 01 + -+ +v, = 1} is the topological #-simplex, and letting
the face and degeneracy maps being given by restriction to faces and precomposition with collapsing

maps A”*! — A”. One may then form the free simplicial abelian group Z[Sing X by letting
Z[Sing X1, = Z[(Sing X),].
Finally, from Z[Sing X] we may build a natural chain complex

co — Z[Sing X], —2 Z[Sing X]; —2% Z[Sing X]p — 0 (4.4.2)

where
n

Op = (-1)'d;

=0
is the alternating sum of the face maps in Z[Sing X]. is typically referred to as the singular
chain complex associated to X, and its homology computes the homology of X.
It turns out that this procedure is reversible and induces an equivalence between chain complexes
concentrated in non-negative degrees and simplicial abelian groups. In fact, the correspondence works
for chain complexes valued in any additive category A giving a comparison with Fun(A°P, A), i.c.

simplicial objects in A.

Definition 4.4.18 ([8, Construction1.2.3.5]). Let.A be an additive category. The Dold-Kan construc-
tion DK : Chx(A) — Fun(A°P, A) is defined as follows: Let (4., d) be a chain complex valued in
A.

(i) For each #,

DK(dh)y= P 4
wlnl> (4]

56



where the direct sum ranges over all surjective maps « : [z] — [£] in A.

(i) Givenpg : [#"] — [n] we define

B DK, = P 4~ (P Av=DK(du)y
a:[n]->[k] o n > [k]

by a matrix of maps (/%) where

(a) fow =idifa’ = af
(b) fuw = dif k¥ =k —1and the diagram

[7'] > [7]

(K] —— {L....k} — [k]

commutes

(c) fauw = 0 otherwise.
We then have the following result.

Theorem 4.4.19 (Dold-Kan Correspondence). Let A be an additive category. Then the Dold-Kan
functor
DK : Chsg(A) — Fun(A°P, A)

is fully faithful. If A is idempotent complete, then DX is an equivalence.

Moreover, when A = Ab, DK induces an equivalence of homotopy categories as well.
Rather than prove this, we give an explicit inverse equivalence in the case of A abelian.

Definition 4.4.20. Let A be an additive category and 4, a simplicial objectin A. The unnormalized

chain complex of Ao, denoted C,(4), is the chain complex

where

is the alternating sum of the face maps of 4,.



Up to quasi-isomorphism, C is the inverse equivalence to DK. However, when A is abelian we

can get an adjoint equivalence on the nose by removing some “fluft” from C. (A4).

Definition 4.4.21. Let A be an abelian category and 4, a simplicial object in A. The normalized

chain complex of As, denoted N, (A), is the chain complex given by
Nu(d) = () kerd; = ker ( P di:d,— P An_l)
1<i<n 1<i<n 1<i<n

with differentials d, i.e.
S Ny () = N4 = NG (4) — 0.

It is immediate from definition that there is a monomorphism N, (4) — C.(A4), but it is not
clear that this induces an isomorphism on homology. To show this we take a detour to quantify exact

which “fluft” we remove my passing to the normalized chain complex.

Definition 4.4.22. Let A be an abelian category and 4, a simplicial object in A. Define the chain
complex of degenerate simplices of Aa, denoted D, (A), to be

D)= | ims=im ( D s: P A An),
0<7i<n-1 0<i<n-1 0<7i<n-1
where here the 5; are the degeneracy maps of 4, with differentials alternating sums of face maps.

It is an easy check using the face and degeneracy map relations that the differential on D, (4) is
well-defined, i.e. carries degenerate simplices to degenerate simplicies. From definition we also imme-
diately see that D, (A4) C C.(4).

Proposition 4.4.23. The composite map
N,(A) — C.(4) » C.(A)/D.(A4)

is an isomorphism.

Proof. See [6, Theorem III.2.1]. To prove this, one fixes » € N and for each 1 < j < 7 defines

N A, = m kerd;

Jj<i<n
and

D4, = U ims;.

J-1<i<n-1
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Then one shows that the induced map
N A4, — A, — A,/ DA,

is an isomorphism for all ; by downward induction. The case / = 1 is then the claimed result. ]

Corollary 4.4.24. The inclusions N.(A) — Ci(A) and D.(A) — C.(A) induce an isomorphism
Ci(4) = N.(4) & D.(4).

Proof. We have the following split short exact sequence

lg

N, (A)
from which the result follows. m|

Thus the normalized chain complex is simply a complement to the degenerate simplices inside
C.(4), 1. the “fluft” we threw out was precisely choosing a canonical choice of simplex representative

for each class modulo degenerate simplices.

Theorem 4.4.25. The complex D.(A) is contractible. In particular, the inclusion N, (A) — Cy(4) is

a homotopy equivalence (and thus a quasi-isomorphism,).
Proof. See [6]. m|
We now state the main part of the correspondence for abelian categories.

Theorem 4.4.26. Let A be an abelian category. There is a canonical isomorphism idch,,a) = N o
DK which exbibits Ny as a right adjoint to DK.

One final remark we make is that, in the case of A = Ab, the category of abelian groups, every
simplicial abelian group 4, is a Kan complex with a canonical base point 0 € A,. Thus we may
define 7,4 = 7,(|4.|, 0) and the abelian group structure on 7,4 induced by the group structure of
A agrees with the usual group structure of 7,4. Chasing through the definitions, one also finds that
H, (N, (A)) = m,A. This has the following application:

Example 4.4.277. Let4 bean abelian group. Then one has the following construction for the Eilenberg—
MacLane space K (4, n):
K (A4, n) = |DKo(A[—7])|.
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Indeed, we have a Quillen equivalence between | - | and Sing, so

[X, IDKe(4[-~])|] = [SingX, DK (A4[-7])]
= Hompo (Fun(a,Ab)) (Z[Sing X ], DK (A[-7]))
= Hompo (Chs (ab)) (N:(Z[Sing X]), A[—n])
= Hompo(Chy (ab)) (Cx (Z[Sing X]), A[-n])
= H"(X A).

This both shows that " (—, 4) is a homotopy invariant and that it is representable in the homotopy

category of spaces. Moreover, we have that

A ifm=n
Tm|DKe(A[-2])| = H,,(A[-n]) =
0 otherwise.

Call this explicit model K (4, ). Moreover, by Hurewicz and the UCT we see that " (K (4, n), A) =
Homgz (H,(K (A, n)), 4) = Homz(A, A). Under this isomorphism, one checks that the universal
element ' € H"(K (4, n), A) corresponds toid : 4 — 4.

Now suppose that X is another path connected space with

A iftm=n
TmX = (4.4.3)
0 otherwise.

Then similarly by Hurewicz theorem and UCT, we have that H”(X, 4) = Homz(4, 4). Thusid :
A— A e H"(X, 4) inducesamap ¢ : X — K (4, n). Now, letx € H,(X). Then we have that

s (x) = F(p.(x))
= (p"F)(x)
=x
by construction, so @ induces the identity H,(X) — H,(K (4, )). Since there is only one non-zero

homotopy group we only need to check that ¢ induces an isomorphism on 7,, but this follows from

the above and Hurewicz. Thus we have also shown that K'(4, #) is uniquely determined up to weak

equivalence by (4.4.3).
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4.4.4 Monoidal Dold—Kan and dg-models

One may show that the Dold-Kan correspondence is lax monoidal and thus induces an adjunction
between algebra objects in the respective categories. In characteristic 0, this induces a Quillen equiv-
alence between commutative differential graded algebras and simplicial algebras. This is important as
it allows one to do derived algebraic geometric in characteristic zero using differential graded algebras,

which are typically easier to work with.
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