COMPARISON OF FIVE METHODS OF COMPUTING
THE DIRICHLET–NEUMANN OPERATOR FOR
THE WATER WAVE PROBLEM

JON WILKENING AND VISHAL VASAN

Abstract. We compare the effectiveness of solving Dirichlet–Neumann problems via the Craig–Sulem (CS) expansion, the Ablowitz-Fokas-Musslimani (AFM) implicit formulation, the dual AFM formulation (AFM*), a boundary integral collocation method (BIM), and the transformed field expansion (TFE) method. The first three methods involve highly ill-conditioned intermediate calculations that we show can be overcome using multiple-precision arithmetic. The latter two methods avoid catastrophic cancellation of digits in intermediate results, and are much better suited to numerical computation.

For the Craig–Sulem expansion, we explore the cancellation of terms at each order (up to 150th) for three types of wave profiles, namely band-limited, real-analytic, or smooth. For the AFM and AFM* methods, we present an example in which representing the Dirichlet or Neumann data as a series using the AFM basis functions is impossible, causing the methods to fail. The example involves band-limited wave profiles of arbitrarily small amplitude, with analytic Dirichlet data. We then show how to regularize the AFM and AFM* methods by over-sampling the basis functions and using the singular value decomposition or QR-factorization to orthogonalize them. Two additional examples are used to compare all five methods in the context of water waves, namely a large-amplitude standing wave in deep water, and a pair of interacting traveling waves in finite depth.

1. Introduction
The water wave equations, also known as Euler’s equations for inviscid, irrotational waves, describe the motion of the free surface of an ideal fluid. For periodic waves in two dimensions over a flat surface in the absence of surface tension, they are given as follows [9]:

\[
\begin{align*}
\phi_{xx} + \phi_{yy} &= 0, \quad -h < y < \eta, \\
\eta_t + \phi_x \eta_x &= \phi_y, \quad y = \eta(x,t), \\
\phi_t + \frac{1}{2} \phi_x^2 + \frac{1}{2} \phi_y^2 + g\eta &= 0, \quad y = \eta(x,t), \\
\phi_y &= 0, \quad y = -h.
\end{align*}
\]

Here \(\phi \) is the velocity potential (related to the fluid velocity by \(\mathbf{u} = \nabla \phi \)), \(\eta \) is the graph of the free surface of the water, \(g \) is the acceleration of gravity, \(h \) is the depth of the undisturbed fluid, and subscripts denote partial derivatives. Since we are interested in periodic waves, we consider periodic boundary conditions in the horizontal direction. We note that the above equations represent a free-boundary
value problem for Laplace’s equation, i.e. both \(\eta \) and \(\phi \) are unknowns. These equations readily generalize to three-dimensional fluids (with two-dimensional surfaces); however, in the present work, we limit ourselves to one-dimensional surfaces.

The water-wave equations may be reformulated in terms of only the surface variables \(\eta(x,t) \) and \(q = \phi(x,\eta,t) \) as \([33, 10]\)

\[
\begin{align*}
\frac{\partial \eta}{\partial t} &= G(\eta)q, \\
\frac{\partial q}{\partial t} &= -g\eta - q_x^2 + \frac{(G(\eta)q + \eta_xq_x)^2}{2(1 + \eta_x^2)},
\end{align*}
\]

where \(G(\eta) \) represents the Dirichlet-Neumann operator (DNO) defined as

\[
G(\eta)q = \phi_y(x,\eta) - \eta_x\phi_x(x,\eta),
\]

where \(\phi \) is the solution to the following boundary-value problem

\[
\phi_{xx} + \phi_{yy} = 0, \quad -h < y < \eta,
\]

\[
\phi(x,y) = q(x), \quad y = \eta,
\]

\[
\phi_y = 0, \quad y = -h.
\]

Thus \(G(\eta) \) maps the given Dirichlet data \(q \) to the associated Neumann data at the free surface. Consequently, to evolve the surface variables in time using some numerical scheme, we require the solution to Laplace’s equation at every time step. Numerically solving Laplace’s equation at every time step is expensive, particularly in three dimensions.

A characterization of \(G(\eta) \) that avoids the expensive numerical solution of Laplace’s equation is appealing. In the current work we discuss four such characterizations developed in the context of water waves. These four methods are the operator expansion method of Craig & Sulem (CS) \([10]\), the transformed field expansion method (TFE) of Bruno & Reitich \([7]\) and Nicholls & Reitich \([23, 24]\), the nonlocal implicit formulation of the DNO given by Ablowitz, Fokas & Musslimani (AFM) \([2]\), and a dual version to the AFM method, derived by Ablowitz & Haut \([1]\), which we denote by AFM*. Each of these methods has had remarkable theoretical utility in deriving reduced models for water waves in various physical regimes \([11]\), in deriving conserved quantities \([2]\), and also in providing the theoretical framework to pose some inverse problems \([25, 28]\). Additionally, each of these methods readily generalizes to the case of both varying bottom boundaries and three dimensional fluids.

Of course, many traditional methods to numerically solve Laplace’s equation exist, including the boundary integral method, conformal mapping techniques, and the finite element method. In the present work we chose to compare the CS and TFE operator expansions and the AFM/AFM* nonlocal formulations with the boundary integral method. We do not consider conformal mapping \([14]\), as it does not extend to three dimensional problems, nor traditional finite elements \([26]\), as the trade-off between high-order elements and sparsity of the stiffness matrix makes them expensive when high accuracy is desired. Though it is not usually described in this way, we regard the TFE method as a spectrally accurate variant of the finite element method. The boundary integral method is particularly efficient in two
dimensions for periodic problems as the lattice sums involved have an explicit analytical representation. However, in three dimensions, boundary integral methods are considerably more difficult to implement.

The overall goal of the present work is to understand the relative effectiveness and accuracy of each method for two-dimensional fluids. The CS, AFM and AFM* methods involve highly ill-conditioned intermediate calculations, so much of the paper focuses on whether accurate results can be obtained if multiple-precision arithmetic is employed in these intermediate calculations. In particular, for time-stepping the water wave, it is important that the methods work if the input data is only known with limited accuracy — additional precision in intermediate calculations is permissible as long as the output is roughly as accurate as the input. Given the care required to obtain high accuracy in the present work, one must be cautious about using these methods in double-precision without carefully monitoring condition numbers and cancellation of digits.

An outline of the paper is as follows. In §2, we briefly introduce the CS operator expansion, the AFM and AFM* nonlocal formulations, and the boundary integral and TFE representations of the DNO. In §3 we present comparisons of the first four of these methods for specific choices of the free surface η. Here we seek to quantify how accurate the CS, AFM and AFM* methods are. We assume the exact DNO is obtained from the boundary integral method, and, where suitable, perform computations using higher precision. Section 3.1 discusses the subtle cancellation properties associated with the series representation of Craig & Sulem. In §3.2, we present a specific example where the AFM* method (in its usual interpretation as a system of equations for the coefficients of a certain series) is guaranteed to fail, and other instances where AFM and AFM* successfully converge to the correct Neumann data. The subtle cancellation of the CS expansion is mirrored by the rapidly decaying singular values associated with the AFM/AFM* methods. This leads us to consider regularized versions of AFM/AFM* that involve oversampling the AFM basis functions to accurately approximate a Gram-Schmidt orthogonalization procedure via QR factorization or the singular value decomposition. In the SVD approach, we also investigate the use of a pseudo-inverse cutoff threshold. We find that the AFM basis functions can be more efficient at representing solutions than a Fourier basis, but with the drawback of poor conditioning. Finally, in §3.3, we discuss the behavior of all the methods on examples relevant to water waves.

2. Representations of the Dirichlet–Neumann operator As mentioned in the introduction, the Dirichlet–Neumann operator plays an important role in the mathematical formulation of the motion of surface gravity waves. To efficiently compute the time-dependent motion, we require a fast and efficient means to solve Laplace’s equation, or alternatively, a direct method to compute the Dirichlet–Neumann operator. In this section, we outline five commonly used approaches. The first, due to Craig & Sulem [10], involves expanding the DNO in a Taylor series. The second, due to Ablowitz, Fokas and Musslimani [2], involves deriving a global relation between the Dirichlet and Neumann data that can be used as an integral equation to solve for the Neumann data. The third [1, 28, 12, 25] is a dual variant of the second, formulated more directly. The fourth is a boundary integral collocation method [19, 6, 16, 20, 5, 31, 32]. And the fifth is the transformed field expansion method of Bruno & Reitich [7] and Nicholls & Reitich [23, 24].
2.1 Power Series Expansion of the DNO. Consider Laplace’s equation
\[
\phi_{xx} + \phi_{yy} = 0,
\]
posed on the domain \(\Omega = \{(x, y) \in \mathbb{R}^2 : 0 < x < L, -h < y < \eta(x)\} \), where \(\eta \) is a smooth periodic function with period \(L \). Further assume that \(\phi \) is periodic in the horizontal variable \(x \) with period \(L \), and
\[
\phi_y(x, -h) = 0.
\]
Thus we restrict ourselves to a flat bottom boundary at \(y = -h \). Let \(D(x) \) and \(N(x) \) be the Dirichlet and Neumann values of the function \(\phi \) at \(y = \eta(x) \). If either \(D(x) \) or \(N(x) \) is given (in appropriate function spaces), the problem of determining \(\phi \) in \(\Omega \) is well-posed in the Hadamard sense. As we require the map from the Dirichlet to the Neumann data, assume we are given a Dirichlet condition at the boundary \(y = \eta(x) \). The associated Neumann condition at the boundary \(y = \eta(x) \) is given in terms of the solution to the following boundary-value problem:
\[
\phi_{xx} + \phi_{yy} = 0, \quad -h < y < \eta(x),
\]
\[
\phi(x + L, y) = \phi(x, y), \quad -h < y < \eta(x),
\]
\[
\eta(x + L) = \eta(x),
\]
\[
\phi(x, \eta(x)) = D(x),
\]
\[
\phi_y(x, -h) = 0.
\]
In abstract terms, the Dirichlet–Neumann operator \(G \) is given by
\[
G(\eta) \mathcal{D} = \phi_y - \eta_x \phi_x,
\]
where \(\phi \) satisfies the above boundary-value problem. Note that a function of the form
\[
\varphi = \exp(ikx) \cosh(k(y + h)),
\]
satisfies Laplace’s equation, periodicity and the boundary condition at \(y = -h \) for \(k = 2\pi n/L, n \in \mathbb{Z} \). Hence
\[
G(\eta)\varphi(x, \eta) = ke^{ikx} \sinh(k(\eta + h)) - i\kappa \eta_x e^{ikx} \cosh(k(\eta + h)). \tag{2.1}
\]
It is well-known (see [10, 23] and references therein) that for a Lipschitz domain, the DNO is an analytic function of the domain shape. Thus, \(G \) has a power series expansion in \(\eta \). Writing
\[
G(\eta) = \sum_{j=0}^{\infty} G_j(\eta),
\]
where \(G_j(\lambda \eta) = \lambda^j G_j(\eta) \) for \(\lambda \in \mathbb{R} \), we obtain an explicit representation for \(G_j(\eta) \) from (2.1) by expanding the hyperbolic terms in their respective Taylor series and identifying terms of the same degree in \(\eta \). To lowest order we obtain
\[
G_0 e^{ikx} = k \tanh(kh) e^{ikx}.
\]
By decomposing the given Dirichlet condition in a Fourier series, we obtain the following representation of the lowest order term of the DNO
\[
\mathcal{F}[G_0 \mathcal{D}] = k \tanh(kh) \mathcal{F}[\mathcal{D}] .
\]
Similarly, proceeding to higher order, we obtain further terms in the expansion of the DNO. For instance,
\[G_1 = D\eta D - G_0 \eta G_0, \]
\[G_2 = -\frac{1}{2} \left(G_0 \eta^2 D^2 - 2G_0 \eta G_0 \eta G_0 + D^2 \eta^2 G_0 \right), \]
where \(D = -i\partial_x \) and \(G_0 = D \tanh(hD) \). Terms such as \(\tanh(hD) \) are understood as pseudo differential operators, \(i.e. \) they are defined through associated Fourier multipliers. We remark that higher order terms of the Taylor expansion of \(G \) involve increasingly higher order derivatives. Although the Taylor series of \(G \) exists for \(\eta \) with a limited (even finite) degree of smoothness, the formulas for \(G_j(\eta) \) are not valid in such cases, or must be interpreted very carefully, as a whole, rather than as a sum of individual operators. Even when \(\eta \) is real analytic, there is a delicate balance existing among the terms that leads to a high degree of cancellation \[23\]. This causes numerical difficulties in finite precision arithmetic. We explore the extent of these cancellations in arbitrary precision arithmetic in \(\S 3 \). Of course, many of these problems can be avoided by flattening the domain through a change of variables \[7, 23, 17\], or using boundary integral methods to compute the DNO \[31, 32\]. However, the original Craig–Sulem expansion remains of theoretical interest, and is the one most closely related to the AFM approach, discussed next.

2.2 AFM Implicit Representation. Following \[2, 1\], we now derive the global relation of the Ablowitz–Fokas–Musslimani reformulation of the water-wave problem. The distinguishing feature of this reformulation is the implicit nonlocal characterization of the Dirichlet–Neumann operator. Solving the resulting integral equation gives the full DNO, effectively summing all the terms in the expansion of Craig & Sulem without having to compute them order by order.

As above, the functions
\[\psi = \exp(ikx) \cosh(k(y + h)) \] (2.2)
play a role, but now as dual functions rather than basis functions. From Green’s second identity, we have
\[0 = \int_D \left(\psi(\phi_{xx} + \phi_{yy}) - \phi(\psi_{xx} + \psi_{yy}) \right) dx \, dy, \]
\[= \int_{\partial D} \left(\psi \frac{\partial \phi}{\partial n} - \phi \frac{\partial \psi}{\partial n} \right) dS, \]
\[= \int_0^L \psi(x, \eta) \left[\phi_y(x, \eta) - \eta_x \phi_x(x, \eta) \right] dx - \int_0^L \phi(x, \eta) \left[\psi_y(x, \eta) - \eta_x \psi_x(x, \eta) \right] dx, \]
\[= \int_0^L \psi(x, \eta) \mathcal{N}(x) dx - \int_0^L \mathcal{D}(x) \left[\psi_y(x, \eta) - \eta_x \psi_x(x, \eta) \right] dx, \] (2.3)
where \(\partial/\partial n \) is the normal derivative to the surface. Using the definition of \(\psi \) and noting that
\[e^{ikx} (k \sinh(k(\eta + h)) - ik \eta_x \cosh(k(\eta + h))) = -i \partial_x \left(e^{ikx} \sinh(k(\eta + h)) \right), \]
we obtain
\[\int_0^L e^{ikx} \cosh(k(\eta + h)) \mathcal{N}(x) dx = \int_0^L i e^{ikx} \sinh(k(\eta + h)) \partial_x \mathcal{D}(x) dx, \] (2.4)
which is the Ablowitz-Fokas-Muslimani (AFM) global relation [2] for Laplace’s equation. Note that the global relation thus obtained is but a rephrasing of Green’s identity. In [2], the authors obtain this expression in a different, but equivalent, manner. By a spectral collocation technique, this yields an algorithm in which approximate values \(N(x_j) \) are obtained on a grid \(\{x_j\}_{j=0}^{M-1} \) by solving a linear system. In that case, (2.4) is enforced for wave numbers \(|k| \leq (2\pi/L)M/2\).

A third approach, due to Ablowitz & Haut [1], can be derived from (2.4) through a type of inverse Fourier transform. The resulting DNO algorithm boils down to solving

\[
\sum_k \hat{\Psi}_k e^{ikx} \cosh(k(\eta + h)) = \mathcal{D}(x),
\]

(2.5)

for the expansion coefficients \(\hat{\Psi}_k \), and then computing

\[
\mathcal{N}(x) = -i\partial_x \left(\sum_k \hat{\Psi}_k e^{ikx} \sinh(k(\eta + h)) \right).
\]

(2.6)

For those functions \(\mathcal{D}(x) \) that permit an expansion of the form (2.5), the normal derivative is expected (from term by term differentiation) to be of the form (2.6).

The operation of solving the integral equation (2.4) is the formal adjoint of solving the system (2.5), (2.6). Indeed, if the (conjugate of the) former is written \(N = (A^*)^{-1}B^*\partial_x \mathcal{D} \), then the latter becomes \(\mathcal{N} = -\partial_x BA^{-1} \mathcal{D} \), which are consistent since \(G(\eta) \) is self-adjoint. Here

\[
A_c = \sum_k c_k e^{ikx} \frac{\cosh(k(\eta(x) + h))}{w_k}, \quad (A^* f)_k = \int_0^L e^{-ikx} \frac{\cosh(k(\eta(x) + h))}{w_k} f(x) \, dx,
\]

\[
B_c = \sum_k c_k i e^{ikx} \frac{\sinh(k(\eta(x) + h))}{w_k}, \quad (B^* f)_k = \int_0^L e^{-ikx} \frac{\sinh(k(\eta(x) + h))}{iw_k} f(x) \, dx,
\]

(2.7)

and the weights \(w_k \) are chosen to make \(A \) and \(B \) bounded from \(L^2(\mathbb{Z}) \) to \(L^2(0,L) \). Formally, these weights cancel internally in the products \((A^*)^{-1}B^* \) and \(BA^{-1} \). Indeed, the results are formally unchanged if both sides of (2.4) are multiplied by \(w_k^{-1} \), or if the weights are absorbed into \(\hat{\Psi}_k \) in (2.5), (2.6). These statements are only formal since \(A \) and \(A^* \) are not invertible.

2.3 Boundary Integral Method. Whereas the AFM* method represents \(\phi \) in the fluid as a superposition of basic solutions of the Laplace equation of the form \(e^{ky} e^{ikx} \), the boundary integral method represents \(\phi \) as a superposition of dipoles distributed along the surface,

\[
\phi(z) = \int_{-\infty}^{\infty} -\partial_n N(z, \zeta(\alpha)) \mu(\zeta(\alpha)) |\zeta'(\alpha)| \, d\alpha, \quad N(z, \zeta) = \frac{1}{2\pi} \log |z - \zeta|.
\]

Here \(\zeta(\alpha) = \alpha + i\eta(\alpha) \) is a parametrization of the free surface and \(z = x + iy \) is a field point in the fluid. We then use

\[
-\frac{\partial N}{\partial n_\zeta} \, ds = \text{Im} \left\{ \frac{\zeta'(\alpha)}{z - \zeta(\alpha)} \right\} \, d\alpha, \quad \frac{1}{2} \cot \frac{z}{2} = PV \sum_k \frac{1}{z + 2\pi k}
\]
to reduce the integral to a period cell, and obtain
\[
\phi(z) = \frac{1}{2\pi} \int_0^{2\pi} \tilde{A}(z, \alpha) \mu(\alpha) \, d\alpha, \quad \tilde{A}(z, \alpha) = \text{Im} \left\{ \frac{\zeta'(\alpha)}{2} \cot \left(\frac{z - \zeta(\alpha)}{2} \right) \right\}.
\]

Using the Plemelj formula [22], we take the limit as the field point approaches the boundary from below to obtain a second kind Fredholm integral equation for \(\mu\):
\[
\frac{\mu(\alpha)}{2} + \frac{1}{2\pi} \int_0^{2\pi} A(\alpha, \beta) \mu(\beta) \, d\beta = \mathcal{D}(\alpha),
\]
\[(2.8)\]
\[
A(\alpha, \beta) = \text{Im} \left\{ \frac{\zeta'(\beta)}{2} \cot \left(\frac{\zeta(\alpha) - \zeta(\beta)}{2} \right) - \frac{1}{2} \cot \left(\frac{\alpha - \beta}{2} \right) \right\}.
\]

Including \(\frac{1}{2} \cot \left(\frac{\alpha - \beta}{2} \right)\) in the formula has no effect on \(A(\alpha, \beta)\), but shows that \(A\) is in fact a smooth function when \(\eta\) is smooth. Indeed, as \(\beta \to \alpha\), the \((\alpha - \beta)^{-1}\) singularities of the terms in braces cancel, yielding \(A(\alpha, \alpha) = \text{Im} \left\{ -\zeta''(\alpha)/[2\zeta'(\alpha)] \right\}\).

Once \(\mu\) is known, the Neumann data is readily shown to satisfy
\[
\mathcal{N}(\alpha) = \frac{1}{2} H[\mu'](\alpha) + \frac{1}{2\pi} \int_0^{2\pi} B(\alpha, \beta) \mu'(\beta) \, d\beta,
\]
\[(2.9)\]
\[
B(\alpha, \beta) = \text{Re} \left\{ \frac{\zeta'(\alpha)}{2} \cot \left(\frac{\zeta(\alpha) - \zeta(\beta)}{2} \right) - \frac{1}{2} \cot \left(\frac{\alpha - \beta}{2} \right) \right\},
\]
where \(H\) is the Hilbert transform, with symbol \(\hat{H}_k = -i \text{sgn}(k)\). To carry this out numerically, \(M\) collocation points are used to turn the integral equation (2.8) into an \(M \times M\) matrix equation, where integrals are approximated by the trapezoidal rule. The derivative and Hilbert transform in (2.9) are easily computed using the FFT. The work involved in setting up and solving these integral equations is very similar to that of the AFM and AFM* methods. However, the condition number is much better in the BIM approach since the underlying infinite dimensional system is a second-kind Fredholm integral equation. This makes a big difference in practice since intermediate calculations need only be done in double-precision to achieve double-precision results, and iterative methods such as GMRES can be employed to reduce the work of solving the equations from \(O(M^3)\) to \(O(M^2)\). See [19, 6, 16, 20, 21, 4, 27, 5, 32] for similar boundary integral methods, including formulations that incorporate a bottom boundary and allow the interface to overturn.

2.4 Transformed Field Expansion method. The aim of this approach [7, 23] is to compute successive terms in the Craig–Sulem expansion via formulas that do not suffer from catastrophic cancellation of digits in floating point arithmetic. The price we pay for this improvement is that the bulk fluid must be discretized. For simplicity, we consider only the finite depth case in two dimensions. The three-dimensional case is considered in [23, 24], while infinite depth is treated in [24] by introducing a fictitious interface coupling the unbounded problem on a half-space to the finite-depth problem with a curved upper boundary and a flat lower boundary.

Instead of deriving the perturbation expansion for \(G(\eta)\) using the ill-conditioned basis functions \(e^{ikx}e^{\pm k'y}\), as was done in (2.1) above, we perform a boundary-flattening change of variables:
\[
u(x, y) = \phi(x, (1 + h^{-1}\eta)y + \eta), \quad 0 \leq x < L, \quad -h < y < 0.
\]
A straightforward calculation reveals that
\[u_{xx} = \phi_{xx} + (1 + h^{-1}y)(1 + h^{-1}\eta)^{-1} \eta_x \partial_y[u_x - \otimes] + \partial_x[\otimes], \]
\[u_{yy} = \phi_{yy} + \left[1 - (1 + h^{-1}\eta)^{-1} \right] u_{yy}, \]
where \(\otimes = (1 + h^{-1}y)(1 + h^{-1}\eta)^{-1} \eta_x u_y. \) Since \(\Delta \phi = 0, \) we find that
\[\Delta u = \partial_x(F_1) + \partial_y(F_2) + F_3, \]
where
\[F_1 = (1 + h^{-1}y)E \eta_x u_y, \quad E = (1 + h^{-1}\eta)^{-1}, \]
\[F_2 = (1 + h^{-1}y)E \eta_x u_x - (1 + h^{-1}y)^2 E^2 \eta_x^2 u_y + (1 - E^2) u_y, \]
\[F_3 = -h^{-1}E \eta_x u_x + h^{-1}(1 + h^{-1}y)E^2 \eta_x^2 u_y. \]

Next, we write \(\eta(x) = \varepsilon f(x) \) and expand \(E \) and \(E^2 \) in powers of \(\varepsilon \) to conclude that the terms of the series \(u(x, y) = \sum_{n=0}^{\infty} \varepsilon^n u_n(x, y) \) satisfy
\[\Delta u_0 = 0, \quad u_0(x, 0) = \mathcal{D}(x), \tag{2.10} \]
\[\Delta u_n = \partial_x(F_1^n) + \partial_y(F_2^n) + F_3^n, \quad u_n(x, 0) = 0, \tag{2.11} \]
as well as \(u_{n,y}(x, -h) = 0 \) and \(u_n(x + L, y) = u_n(x, y). \) Here
\[F_1^n = (1 + h^{-1}y)f_x \sum_{m=0}^{n-1} (-h^{-1}f)^m u_{n-1-m,y}, \]
\[F_2^n = (1 + h^{-1}y)(F_4 - F_5) + \frac{f}{h} \sum_{m=0}^{n-1} (m + 2)(-h^{-1}f)^m u_{n-1-m,y}, \]
\[F_3^n = h^{-1}(F_5 - F_4), \quad F_4^n = f_x \sum_{m=0}^{n-1} (-h^{-1}f)^m u_{n-1-m,x}, \]
\[F_5^n = (1 + h^{-1}y)f_x^2 \sum_{m=0}^{n-2} (l + 1)(-h^{-1}f)^m u_{n-2-m,y}. \]

Finally, we use
\[G(\eta)\mathcal{D} = \mathbf{n} \cdot \left[\nabla \phi \right]_{y=0} = \left[- \eta_x u_x + (1 + \eta_x^2)(1 + h^{-1}\eta)^{-1} u_y \right]_{y=0}, \]
\[\mathbf{n} = (-\eta_x, 1), \quad \nabla \phi = \left(u_x - (1 + h^{-1}y)(1 + h^{-1}\eta)^{-1} \eta_x u_y, (1 + h^{-1}\eta)^{-1} u_y \right) \]
to conclude that \(G(\varepsilon f) = \sum_{n=0}^{\infty} \varepsilon^n G_n(f) \) with
\[G_n(f)\mathcal{D} = -f_x u_{n-1,x} + \sum_{m=0}^{n} (-h^{-1}f)^m u_{n-m,y} + f_x^2 \sum_{m=0}^{n-2} (-h^{-1}f)^m u_{n-2-m,y}, \]
where empty sums (with upper index smaller than lower index) are zero.

In our code, \(u_{n,x}(x, y) \) and \(u_{n,y}(x, y) \) are stored on a rectilinear grid with \(M \) uniformly spaced mesh points in the \(x \)-direction and \(N+1 \) Chebyshev-Lobatto nodes in the \(y \)-direction, mapped by an affine transformation to obtain \(y_0 = -h \) and \(y_N = 0. \) Functions on the grid are stored as matrices with entries in a column indexed by \(x, \) holding \(y \) fixed. The formulas for \(F_j^n(x, y) \) are evaluated pointwise on the grid from the known values of \(f(x), f(x), u_{m,x}(x, y) \) and \(u_{m,y}(x, y) \) for \(m = 0, \ldots, n-1. \)
The FFT of the zeroth order term $u_0(x, y)$ is computed from (2.10) by expanding $\mathcal{D}(x)$ in a Fourier series and evaluating $\hat{u}_0(k, y) = \mathcal{D}_k \cosh(k(y+h)) \text{sech}(kh)$ at the grid points y_j. To obtain $u_{0,x}(x, y)$, we multiply $\hat{u}_0(k, y)$ by ik and take the inverse FFT. Similarly, $u_{0,y}(x, y)$ is obtained by taking the iFFT of $\partial_y \hat{u}_0(k, y)$. This latter function is computed by transforming the rows of \hat{u}_0 to their Chebyshev coefficients (also using an FFT), differentiating the Chebyshev polynomials, and evaluating the result on the grid using the Clenshaw recurrence formula. The differentiation procedure amounts to determining the coefficients of $\partial_y \hat{u}_0$ from those of \hat{u}_0:

\[
\hat{u}_0(k, y) = \sum_j \alpha_j(k) T_j(1 + 2h^{-1}y), \quad \partial_y \hat{u}_0(k, y) = \sum_j \beta_j(k) T_j(1 + 2h^{-1}y)2h^{-1},
\]

\[
\beta_N = 0, \quad \beta_{N-1} = N\alpha_N, \quad \beta_j = (j + 1)\alpha_{j+1} + \beta_{j+2}, \quad (j = N - 2 : -1: 0),
\]

where $T_j(y)$ is the jth Chebyshev polynomial. Finally, (2.11) is solved using an FFT in the x-direction to convert the PDE into a collection of uncoupled boundary value problems in y. The kth BVP is

\[
\partial_y^2 \hat{u}_n(k, y) - k^2 \hat{u}_n(k, y) = ik\hat{F}_1^n(k, y) + \partial_y \hat{F}_2^n(k, y) + \hat{F}_3^n(k, y),
\]

subject to $\partial_y \hat{u}_n(k, -h) = 0, \hat{u}_n(k, 0) = 0$. Instead of using the Chebyshev tau method [24, 8] to solve this BVP, we multiply by a test function, integrate the first term by parts, and proceed as if implementing a finite element method using Chebyshev polynomials as the basis functions. Our implementation is similar to what was done in [30] to study the projected dynamics of kinetic diffusion equations.

In this section we assess the merits and shortcomings of the CS method and the AFM/AFM* methods. In §3.1, we explore the convergence of the CS expansion and quantify the delicate cancellation of terms mentioned in [23]. In §3.2, we present an example illustrating a circumstance in which the AFM* method (in its usual interpretation) is guaranteed to fail. By over-sampling the columns of the linear operators involved in the AFM/AFM* methods, we are once again able to compute the true normal derivative with spectral accuracy. We also report on the performance of the CS expansion method for the examples considered for the AFM method. Finally in §3.3 we consider the performance of these three methods, as well as the TFE and BIM methods, on two examples in which the Dirichlet data and free surface come from solutions of the water-wave equations. The first is a standing water wave and the second involves two interacting traveling water waves.
3.1 Cancellation properties of the DNO expansion. For simplicity, until §3.3, we restrict to the case of two-dimensional fluids of infinite depth. In that case, the DNO expansion takes the form \[G_0(f) = |D|, \] where the symbols of \(D \) and \(|D| \) are \(k \) and \(|k| \), respectively. Note that \(G_n(\eta) = \varepsilon^n G_n(f) \) when \(\eta = \varepsilon f \). Computationally, it is convenient to absorb the \(s = 0 \) term into the first term: \[G_n(f) = A_n(f) - \sum_{s=1}^{n-1} \frac{1}{(n-s)!} |D|^{n-s} f^{n-s} G_s(f), \quad n = 1, 2, 3, \ldots, \] where \(A_n(f) = \frac{1}{n!} |D|^{n-1} (D f^n D - |D| f^n |D|) \) for \(n \geq 1 \). In Fourier space, \(A_n(f) \) is an infinite matrix with the quadrants containing the main diagonal zeroed out: \[A_n(f)_{kj} = \begin{cases} -\frac{2|k|^n |j|}{n!} (f^n)_{k-j}^\wedge, & kj < 0, \\ 0, & kj \geq 0. \end{cases} \] This already accomplishes a fair amount of cancellation since \(|k - j| > |k| \) when \(jk < 0 \), so the rapid growth of \(|k|^n/n! \) is balanced by decay of \((f^n)_{k-j}^\wedge \) when \(f \) is smooth. Indeed, if \(f \) is real analytic, one may show that there exist \(C \) and \(\rho \) such that \(|(f^n)_{k}^\wedge| \leq C^n e^{-\rho|k|} \), which is enough to guarantee that \(A_n(f) \) maps \(l^2 \) sequences \(\hat{\varphi} \) to exponentially decaying sequences: \[|(A_n(f)\varphi)_{k}^\wedge| \leq \frac{|Ck|^n e^{-\rho|k|}}{n!} \sum_{j \in J(k)} 2|j| e^{-\rho|j|} \|\hat{\varphi}_j\| \leq \left(\rho^{-3/2} e^{2\rho} \|\hat{\varphi}\|_2 \right) \frac{|Ck|^n}{n!} e^{-\rho|k|}. \] Here \(J(k) \) is the set of positive integers when \(k \) is negative and the set of negative integers when \(k \) is positive. Thus, if \(f \) is real analytic, (3.14) implies that \(G_n(f)\varphi \) is real analytic for \(n \geq 1 \) when \(\varphi \) is merely \(L^2 \). Also, aside from \(n = 0 \), \(G_n(f) \) is bounded on \(L^2 \) when \(f \) is real analytic.

Numerical experiments reveal that significant additional cancellations occur in (3.14), beyond combining \(D f^n D \) with \(|D| f^n |D| \). Indeed, without these cancellations, even when \(f \) is real analytic, one would expect \((|D| f)^{n-1} A_1(f) \), which is one of the terms in (3.14) when the recursion is unrolled, to grow super-exponentially with \(n \). In Figure 1, we plot the Frobenius norm of the operators \(A_n(f)^\wedge \) and \(G_n(f)^\wedge \) versus \(n \) for the functions

Example 1: \[f(x) = \cos(x - \pi/6), \] \[f(x) = \sinh(1) \] \[f(x) = \cosh(1) - \cos(x), \] \[f(x) = \sum_k \exp \left(\frac{3}{2} |k|^{2/3} \right) e^{ikx}, \] \[f(x) = \sum_k \exp \left(\frac{3}{2} |k|^{2/3} \right) e^{ikx}, \] which are band-limited, real-analytic, and \(C^\infty \), respectively. The Frobenius norm of a matrix (in this case doubly-analytic) is the root sum of squares of the matrix entries. We computed it in arbitrary precision arithmetic using (3.15) to evaluate \(A_n(f)^\wedge \) and (3.14) to evaluate \(G_n(f) \). The computations were done column by column, in
parallel. We worked in Fourier space except when computing $f^{n-s}G_s(f)$, which was done by applying the inverse FFT to a column of $G_s(f)^\wedge$, then multiplying by f^{n-s} in real space, and finally applying the FFT again. The Frobenius norm of $A(f)^\wedge$ was computed from the indices in the range

$$k < 0, \quad j > 0, \quad |k - j| < M/2, \quad (3.19)$$

where M was chosen large enough that, for the range of n’s considered, the terms $A_n(f)^\wedge_{k,j}$ with $|k - j| \geq M/2$ are small compared to the largest of those satisfying $|k - j| < M/2$, and may be set to zero. As explained above, this is possible since the exponential decay of $(f^n)^\wedge_{k-j}$ dominates the polynomial growth of $|k|^n|j|$ in (3.15). This M was also used as the number of grid points in the FFT. We include a factor of 2 when summing the squares of the matrix entries to account for the entries $A_n(f)^\wedge_{-k,j} = A_n(f)^\wedge_{k,-j}$ in the opposite quadrant, $k > 0, j < 0$.

The other consideration for choosing M is that errors near the boundary propagate inward when computing $G_n(f)^\wedge$. Thus, we choose a smaller integer K and compute the Frobenius norm of $G_n(f)^\wedge$ from the entries with indices

$$-K/2 < k < K/2, \quad 0 < j < K/2. \quad (3.20)$$

The remaining columns of $G_n(f)^\wedge$ (with $K/2 \leq j < M/2$) are not computed, although the rows are computed out to $-M/2 < k < M/2$. We always zero out the Nyquist frequency, $|k| = M/2$. As before, $G_n(f)^\wedge_{k,-j} = G_n(f)^\wedge_{k,j}$ is accounted for in Figure 1 with a factor of $\sqrt{2}$ in the root sum of squares.

The parameters used in these computations were

<table>
<thead>
<tr>
<th>Example</th>
<th>M</th>
<th>K</th>
<th>n_{max}</th>
<th>bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>256</td>
<td>128</td>
<td>100</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>2048</td>
<td>330</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>24576</td>
<td>768</td>
<td>150</td>
<td>1500</td>
</tr>
</tbody>
</table>

Here “bits” refers to the binary precision of the mantissa, where 53 would correspond to double-precision. We used MPFR [15] for the floating-point arithmetic, which
Figure 2. Plots of the magnitudes of the non-zero matrix entries in selected columns (indexed by \(j\)) of \(A_n(f)\wedge\) and \(G_n(f)\wedge\) for Example 1. The orange and black markers were computed with 300 bits of precision while the blue markers were computed with 900 bits of precision. The support of each column is finite since \((f^n)_k = 0\) for \(|k| > n\).

provides IEEE-like arbitrary precision rounding behavior. We also used double-precision and quadruple-precision arithmetic (using the qd package) in some cases. The following table gives running times for multiplying two 1000 \(\times\) 1000 matrices on a 3.33 GHz Intel Xeon X5680 system with 12 cores:

<table>
<thead>
<tr>
<th>precision</th>
<th>double</th>
<th>quad</th>
<th>300 bits</th>
<th>500 bits</th>
<th>1500 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>time (in seconds)</td>
<td>0.0157</td>
<td>1.66</td>
<td>12.5</td>
<td>17.1</td>
<td>63.5</td>
</tr>
</tbody>
</table>

The double-precision calculation is particularly fast due to the use of Intel’s math kernel library. The higher-precision examples were parallelized using openMP, but do not employ block-matrix algorithms to re-use data that has been pulled from main memory to cache. Our general experience (excluding level 3 BLAS routines such as matrix-matrix multiplication) is that switching from double to quadruple to arbitrary precision slows down the calculation by a factor of 10 each.

In Figure 2, we plot the non-zero matrix entries of \(A_n(f)\wedge\) and \(G_n(f)\wedge\) for Example 1. Because \(f(x) = \cos(x - \pi/6)\), the Fourier modes \((f^n)_k\wedge\) are zero for \(|k| > n\) or \(k - n\) odd. As a result, \(A_n(f)\wedge\) and \(G_n(f)\wedge\) have only finitely many nonzero terms in this example:

\[
A_n(f)_{kj}\wedge = 0 \text{ if } kj \geq 0, \quad |k| > n - |j|, \text{ or } k - j - n \text{ is odd}, \\
G_n(f)_{kj}\wedge = 0 \text{ if } kj = 0, \quad |k| > n - |j|, \text{ or } k - j - n \text{ is odd}.
\]

In Figure 2, we explicitly filtered the data to zero out matrix entries of \(A_n(f)\wedge\) and \(G_n(f)\wedge\) with indices in these ranges. If this is not done, roundoff error from the FFT is rapidly amplified by the recurrence (3.14), and requires additional precision to maintain accuracy. This is demonstrated in Figure 3, where we did not filter the data. Increasing the precision from 300 bits to 600 causes the correct values of \(G_n(f)\wedge\) to emerge from the roundoff noise. This is less of an issue for \(A_n(f)\wedge\), which involves errors from taking the FFT of \(f^n\), amplified by \(|k|^n/n!\), but no recurrence.

In Figures 4 and 5, we plot selected columns of \(A_n(f)\wedge\) and \(G_n(f)\wedge\) for Examples 2 and 3. The main change from the band-limited case of Example 1 is that the matrices are no longer of finite rank, and do not have compactly supported columns. For small \(n\), the decay rate of each column (with respect to row index \(k\))
Figure 3. Repeat of the calculation of Figure 2 without imposing a zero-pattern filter on the matrices as they are constructed. The $n = 20$ solution has been replaced by a second instance of the $n = 100$ solution. (left and right) With 300 bits of precision, $G_n(f)^\wedge$ is almost entirely corrupted with roundoff errors. (center) With 600 bits of precision, roundoff error is suppressed enough to achieve an accurate result. Errors are largest near $k = \pm M/2$, and propagates inward as n increases.

Figure 4. Plots of the magnitudes of the matrix entries in the $j = 10$th column of $A_n(f)^\wedge$ and $G_n(f)^\wedge$, with $n = 10, 30, 100$, for Example 2. For small n, the amplitude of $G_n(f)^\wedge_{kj}$ is similar to that of $A_n(f)^\wedge_{kj}$, indicating that little cancellation has occurred. By the time n reaches 100, the leading 90 digits of $A_n(f)^\wedge_{kj}$ have been eliminated in the recurrence (3.14) to obtain $G_n(f)^\wedge_{kj}$ for typical values of j, k.

is still very fast, and the cancellations in obtaining $G_n(f)^\wedge$ from $A_n(f)^\wedge$ is fairly mild. However, as n increases, the cancellations become quite severe. The cancellations can be seen in the figures as the vertical difference from one curve to the other. Recall that $A_n(f)^\wedge$ is the first term in the formula (3.14) for $G_n(f)^\wedge$. The functions (3.17) and (3.18) have Fourier modes of the form

$$\hat{f}_k = e^{-\alpha|k|^\beta},$$

(3.21)

where $\alpha = \beta = 1$ in Example 2 and $\alpha = \beta^{-1} = 3/2$ in Example 3. Example 2 is intended to represent a typical real-analytic function, while Example 3 was designed to check if super-exponential growth in the norms of the operators $A_n(f)$
Figure 5. Plots of the magnitudes of the matrix entries in the 10th column of $A_n(f)^\wedge$ and $G_n(f)^\wedge$, with $n = 10$ and 150, for Example 3. M had to be chosen quite large ($M = 24576$) to prevent errors from propagating inward to $k = 0$ before $n = 150$. Note that more than 250 leading digits of $A_n(f)^\wedge$ cancel to form $G_n(f)^\wedge$ for this column when $n = 150$. Might cause $G_n(f)^\wedge$ to also grow super-exponentially with n. To see why $A_n(f)^\wedge$ grows super-exponentially, note that iterated convolution of \hat{f} with itself yields $(f^n)_k \geq \hat{f}_k = e^{-\alpha|k|^\beta}$ for functions of the form (3.21). We then consider the $j = 1$ column of (3.15) and maximize $\max_k A_n(f)_k^\wedge \geq \max_k |k|^\alpha e^{-\alpha|k|^\beta}/n!$.

The maximum on the right occurs near $k^* = -(n/\alpha\beta)^{1/\beta}$, so we set $\alpha = \beta^{-1}$ and obtain, via Sterling’s formula,

$$A_n(f)^\wedge_{k^*,1} \geq (\sqrt{2\pi n})^{\beta-1} (n!)^{\beta-1-1}.$$

We tried $\beta = 1/2$ and $\beta = 2/3$. The decay in the former case was too slow for the problem to be computationally tractable beyond $n = 50$. So we present the results in Figure 5 with $\beta = 2/3$, where we were able to compute terms out to $n = 150$. Returning to Figure 1, the right panel shows that the Frobenius norm of $A_n(f)^\wedge$ does indeed grow super-exponentially, but the cancellations are strong enough that $G_n(f)^\wedge$ remains fairly flat. As a result, $\|G_n(\varepsilon f)^\wedge\|_F$ decays like ε^n for large n even though $\|A_n(\varepsilon f)^\wedge\|_F$ eventually stops decaying for any positive ε.

In addition to visual confirmation that roundoff error has not corrupted $G_n(f)^\wedge_{jk}$ for $|k|$ small, as demonstrated in Figures 3–5, we also validate the results by checking self-adjointness of each $G_n(f)^\wedge$. This is done by measuring

$$r_n = \max_{j,k \in \mathbb{K}} \frac{|G_n(f)^\wedge_{jk} - G_n(f)^\wedge_{kj}|}{\|G_n(f)^\wedge\|_F}, \quad \mathbb{K} = \{k : |k| < K/2\}. \quad (3.22)$$

In Figure 6, we plot r_n versus n for each of the three examples. Note that 300 bits of precision was not sufficient in the unfiltered case of Example 1 to avoid $O(1)$ errors in the symmetry of $G_n(f)^\wedge$, whereas 600 bits gives at least 90 correct digits. This is consistent with the results of Figure 3, where the signal is barely distinguishable from the noise in the left panel, but is many orders of magnitude larger in the center panel. In hindsight, 1500 bits was overkill for Example 3 since the symmetry errors in $G_n(f)^\wedge$ are still below 10^{-200} when $n = 150$. Further validation of the
correctness of the DNO expansion will be given in the following section, where it will be used to compute $G(\eta)\mathcal{D}$ in a case where the solution is known.

3.2 Examples illustrating success and failure of the AFM method. In this section we present examples which show that even for band-limited wave profiles η of arbitrarily small amplitude, the system (2.5-2.6), with the sums interpreted as infinite series, may fail to produce the Neumann data for Dirichlet data of a certain class, which includes real analytic functions, regardless of how many digits of arithmetic are used in the computation.

Both AFM and AFM* methods involve linear operators acting on the unknown Neumann data. In this section, we study the singular value decomposition (SVD) of truncations of these linear operators. By over-sampling the columns, we obtain better approximations of the SVD of the underlying quasi-matrices A and B in (2.7), whose columns are continuous functions. This leads to regularized versions of the AFM/AFM* methods, the simplest version (with no pseudo-inverse cutoff) being equivalent to performing a Gram-Schmidt orthogonalization of the basis functions $e^{ikx}\cosh(k(\eta(x) + h))$ before attempting to represent $\mathcal{D}(x)$ or $\mathcal{N}(x)$ using these functions. The regularized approach enables these methods to be used even if no series of the form (2.5) exists for $\mathcal{D}(x)$.

We now construct a function $\mathcal{D}(x)$ for which no such series exists. Consider the function

$$
\phi(x,y) = \frac{1}{2} \Im \left\{ \cot \left(\frac{x + iy}{2} \right) - \cot \left(\frac{x + iy + 2ih}{2} \right) \right\}, \quad (3.23)
$$

which is 2π-periodic in x and harmonic for all x,y outside of the set $(2\pi\mathbb{Z}) \times \{0, -2h\}$. Further, $\phi(x, -h - y) = \phi(x, -h + y)$ and hence $\phi_y(x, -h) = 0$ for all x. Evaluating at $y = -h$, we obtain

$$
\phi(x, -h) = \frac{\sinh(h)}{\cosh(h) - \cos(x)} = 1 + 2 \sum_{k=1}^{\infty} e^{-kh} \cos kx = \sum_{k=-\infty}^{\infty} e^{-|k|h} e^{ikx}.
$$
For values of \(y \) in the range \(-2h < y < 0\), we may also write
\[
\phi(x, y) = 1 + 2 \sum_{k=1}^{\infty} e^{-kh} \cosh(ky + kh) \cos kx
\]
\[
= 1 + \sum_{k=1}^{\infty} (e^{ky} + e^{-k(y+2h)}) \cos kx, \quad (-2h < y < 0).
\] (3.24)

In the form (3.23), \(\phi \) is well-behaved except at the poles. However, the AFM formulation is based on representing \(D \) via the series (3.24), which is divergent for \(y \geq 0 \). Thus, we expect trouble for wave profiles \(\eta(x) \) that extend above \(y = 0 \).

The simplest example illustrating these difficulties is the infinite depth case with
\[
\eta(x) = -\varepsilon \cos(x).
\] (3.25)

Introducing the weights \(w_k = \cosh(k(\eta_{\text{max}} + h)) \) in (2.7) and taking the limit as \(h \to \infty \), the system (2.4) becomes
\[
\int_{0}^{L} e^{ik[(\eta - \eta_{\text{max}})]} e^{-ikx} \mathcal{N}(x) \, dx = \int_{0}^{L} -i \sgn(k) e^{ik[(\eta - \eta_{\text{max}})]} e^{-ikx} \partial_x \mathcal{D}(x) \, dx,
\] (3.26)

where \(\eta_{\text{max}} = \max_{0 \leq x \leq 2\pi} \eta(x) = \varepsilon \). Similarly, (2.5), (2.6) become
\[
\sum_{k} c_k e^{ik[(\eta - \eta_{\text{max}})]} e^{ikx} = \mathcal{D},
\] (3.27)
\[
\mathcal{N} = -i\partial_x \sum_{k} c_k \sgn(k) e^{ik[(\eta - \eta_{\text{max}})]} e^{ikx}.
\] (3.28)

In our case, using \(\cot \frac{x+iy}{2} = \frac{\sin x - i \sinh y}{\cosh y - \cos x} \) in (3.23), we have
\[
\phi(x, y) = \frac{1}{2} \left(\frac{-\sinh y}{\cosh y - \cos x} + 1 \right), \quad \mathcal{D}(x) = \frac{1}{2} \left(\frac{\sinh(\varepsilon \cos x)}{\cosh(\varepsilon \cos x) - \cos x} + 1 \right),
\]
\[
\mathcal{N}(x) = \hat{\phi}_y - \eta_x \hat{\phi}_x = \frac{\cosh(\varepsilon \cos x) \cos x - 1 + \varepsilon (\sin^2 x) \sinh(\varepsilon \cos x)}{2(\cosh(\varepsilon \cos x) - \cos x)^2}.
\] (3.29)

Since \(\eta \) dips below the poles at \(x \in 2\pi\mathbb{Z} \), \(\phi \) is harmonic on \(-\infty < y < \eta(x)\). Moreover, \(\mathcal{D}(x) = \phi(x, \eta(x)) \) is real analytic and \(2\pi \)-periodic. Nevertheless, there is no solution of (3.27) valid over the whole interval \(0 \leq x \leq 2\pi \). From (3.24), we see that the coefficients
\[
c_k = \begin{cases}
1 & k = 0 \\
(1/2)e^{ik[\eta_{\text{max}}]} & k \neq 0
\end{cases}
\] (3.30)

will work over \(\{ x : \eta(x) < 0 \} \), but not elsewhere; see Figure 7.

There remains the possibility that for any prescribed tolerance, a choice of the \(c_k \) can be made such that (3.27) is satisfied approximately, to the specified tolerance. In other words, the left-hand side is not treated as a series, but instead as a finite linear combination of basis functions that can approximate \(\mathcal{D} \) to arbitrary accuracy. Rather than just add more terms to improve accuracy, it may be necessary to change all the coefficients \(c_k \). To explore this possibility, we construct the \(M \) by \(K - 1 \) matrices \(A \) and \(B \) with entries
\[
A_{jk} = \frac{1}{M} \exp \left(ik[(\eta(x_j) - \eta_{\text{max}})] \right) e^{ikx_j}, \quad B_{jk} = i \sgn(k) A_{jk},
\] (3.31)
Figure 7. Comparison of the series representation (3.27), (3.28), (3.30) of \mathcal{D} and \mathcal{N}, (blue curves), to the exact formulas (3.29), (red markers), for $\eta(x) = -\varepsilon \cos x$, $\varepsilon = 0.5$. The series was truncated at $|k| = 64$, and the results were plotted at 128 grid points. A centered finite difference was used to compute the derivative in (3.28). As expected, the series diverges for $\frac{\pi}{2} \leq x \leq \frac{3\pi}{2}$, where $\eta(x) \geq 0$.

where $-K/2 < k < K/2$, $x_j = 2\pi j/M$, and $M \geq K$. We then compute the singular value decomposition $A = USV^*$, with S and V square and U of dimension $M \times (K - 1)$, and evaluate

\[\mathcal{N} = U \text{pinv}(S)V^* B^* \partial_x \mathcal{D}, \quad \text{(AFM)}, \] (3.32)

\[\mathcal{N} = -\partial_x BV \text{pinv}(S)U^* \mathcal{D}, \quad \text{(AFM*)}. \] (3.33)

Here ∂_x is computed spectrally via the FFT (with no filter). The idea here is to sample each column of A and B in (2.7) with enough points that computing the SVD of the resulting matrix A in (3.31) is equivalent (up to scaling by \sqrt{M} in various places) to computing the SVD of the quasi-matrix A in (2.7), whose columns are continuous, L^2 functions:

\[A = USV^*, \quad U : \mathbb{C}^{K-1} \to L^2, \quad S : \mathbb{C}^n \to \mathbb{C}^n, \quad V : \mathbb{C}^n \to \mathbb{C}^n. \] (3.34)

Here A has been truncated to have $K - 1$ columns, U and V are unitary, S is diagonal with positive decreasing entries, and L^2 is equipped with the inner product $\langle f, g \rangle = \frac{1}{2\pi} \int_0^{2\pi} f \bar{g} \, dx$ to avoid factors of $\sqrt{2\pi}$ elsewhere. The columns of U form an orthonormal basis for the column-span of A. Once sufficient grid resolution is reached, approximating \mathcal{D} and \mathcal{N} at the M collocation points leads to accurate approximation throughout $(0, 2\pi)$, using trigonometric polynomials to interpolate between grid points. The columns of the matrix version of U can be thought of as sampled versions of the columns of the quasi-matrix U from (3.34), up to a factor of \sqrt{M}.

For smaller values of M, trigonometric interpolation becomes less accurate, and the errors can be amplified significantly on division by small singular values. We remark that if the pseudo-inverse in (3.32) and (3.33) is replaced by an inverse, then one can use a QR factorization instead of the SVD to obtain an orthonormal basis U for the column span of A. This gives up some flexibility in regularizing the AFM/AFM* methods, but is cheaper and has the advantage that the leading basis functions do not change if K is increased. This QR approach is equivalent to Gram-Schmidt orthogonalization when the columns are sampled sufficiently.
Figure 8. Singular values (A), exact solution (D), and effect of varying M and the pseudo-inverse cutoff, k_{cutoff}, in the AFM and AFM* methods (B,C,E,F). Errors were computed relative to the exact solution N given in (3.29). 360 bits of precision were used in the AFM and AFM* calculations so that aliasing and truncation errors dominate roundoff errors.

The results of computing N from \mathcal{D} in (3.29) are shown in Figure 8. The first panel shows the singular values of A with $K = 256$ and $M \in \{256, 320, 288, 384\}$. In all four cases, the singular values decay very rapidly, with slightly slower decay when M is larger. By contrast, the singular values of A in the boundary integral approach (BIM) remain nearly constant. Panel B shows the error in N from (3.32),

$$\text{error} = \sqrt{\frac{1}{M} \sum_{j=0}^{M-1} |E_j|^2}, \quad E_j = N(x_j) - [U \text{pinv}(S)V^*B^*\partial_x \mathcal{D}]_j,$$

(3.35)

where N refers to the exact solution (3.29), plotted in Panel D. The error depends on the pseudo-inverse cutoff index, k_{cutoff}, defined by

$$\text{pinv}(S)_{ij} = \begin{cases} S_{ii}^{-1} & i = j \leq k_{\text{cutoff}}, \\ 0 & \text{otherwise}. \end{cases}$$

It consists of two parts, one due to how well N is approximated by the leading k_{cutoff} columns of U, and one by how well the coefficients $c = UU^*N$ are approximated by

$$c \approx \text{pinv}(S)V^*B^*\partial_x \mathcal{D}.$$

For all values of $M \geq K$, the error in panel B decreases initially as k_{cutoff} increases. This suggests that the leading entries of $\text{pinv}(S)V^*B^*\partial_x \mathcal{D}$ are a good approximation of those of c. When M is close to K ($M = 256$ or 288 in the figure), the
error reaches a minimum at an optimal k_{cutoff}, and then increases rapidly. This occurs because the singular values σ_k become so small that the high-index entries of $\text{pinv}(S)V^*B^*D\partial_x D$ become large and no longer approximate the corresponding entries of c. For larger M, the singular values decay more slowly and the error curve decreases monotonically all the way to $k_{\text{cutoff}} = K - 1$.

Panel E shows the vector version of the error, namely E_j in (3.35), corresponding to the minima of the error curves in Panel B. For smaller values of M, the error E_j is largest where $\eta(x)$ is smallest. This is not surprising since the corresponding rows of A are smaller in this region due to the exponential growth of the basis functions $e^{ky}e^{ikx}$ in the y-direction. What is surprising is the extreme accuracy that is achieved by the AFM method in the region where $\eta(x) > 0$ for smaller values of M. We do not know why this occurs. This additional accuracy disappears as the errors are reduced in the region where $\eta(x) < 0$ by increasing M. Once M reaches 384, the columns of A are well-resolved in $L^2(0, 2\pi)$ as discussed above, and the error E_j is roughly uniform throughout the domain.

Panels C and F show the same results for the AFM* method. The results are very poor when $M = K = 256$, presumably a consequence of aliasing errors in sampling the columns of A being amplified on division by small singular values. As M increases, the aliasing errors become smaller and the singular values become larger. By the time M reaches 384, the error of the AFM* method is similar to that of the AFM method, of order 10^{-15}. By contrast, the boundary integral method has errors of order 10^{-30} with $K = M = 256$. There is little amplification of roundoff error in the BIM approach since A is so well-conditioned.

Figure 9 shows a similar computation to the above, but with $\eta(x)$ offset vertically so that the series (3.24) converges at all points on the curve. Specifically, we set

$$\eta(x) = -1.0 - \varepsilon \cos(x), \quad \varepsilon = 0.5.$$

The formulas (3.29) remain nearly the same, with $\varepsilon \cos x$ replaced by $1 + \varepsilon \cos x$. The singular values in Panel A are the same as those in Figure 8 since η_{max} is also shifted downward by 1 in (3.31). The AFM method behaves similarly to before, achieving exceptional accuracy in the region where η is largest when M is close to K, and achieving nearly uniform accuracy once M is large enough to fully resolve the columns of the continuous version of A. Because \mathcal{D} and \mathcal{N} are smoother (with faster decay of Fourier modes), all three methods (AFM, AFM* and BIM) yield smaller errors in Figure 9 than in Figure 8. The AFM* method turns out to be superior to the AFM method on this example for all four choices of M. By contrast, in Figure 8, the AFM method was better for $M = 256, 288$ and 320, and the two methods were equal when $M = 384$. A partial explanation is that the left-hand side of (3.27) is a genuinely convergent series in this second example, as opposed to a finite linear combination of vectors from a dense set. Thus, the AFM* method has an easier time selecting the coefficients c_k that best represent \mathcal{D}. By contrast, for the AFM method, there is little difference between the two examples. In either case, the exact solutions \mathcal{D} and \mathcal{N} satisfy the AFM global relation, and the question of convergence comes down to how well the trapezoidal rule approximates the integrals, and how much the errors are amplified by the poorly-conditioned A matrix. We do not know why the AFM* method turns out to be 25 orders of magnitude more accurate once M reaches 384. As before, the BIM method is superior to both AFM methods.
In Figure 10, we check convergence of the Craig-Sulem expansion for this example. As in Figure 8, we consider \(\eta(x) = -\varepsilon \cos x, \varepsilon = 0.5 \), with Dirichlet data as in (3.29). The computations were done on a 256-point grid with 360 bits of precision. Panel A shows the errors in the partial sums, defined as

\[
\| E^{(n)} \| = \sqrt{\frac{1}{M} \sum_{j=0}^{M-1} |E^{(n)}(x_j)|^2}, \quad E^{(n)}(x) = \mathcal{N}(x) - \sum_{j=0}^{n} [G_j(\eta) \mathcal{D}]_{k}.
\]

The errors decrease steadily until \(n = 95 \), where \(\| E^{(n)} \| \) reaches \(10^{-32} \), the level of aliasing errors in the Fourier representation of \(\mathcal{D} \) and \(\mathcal{N} \) on a 256-point grid. Recall that the error in the boundary integral method with 256 points was also around \(10^{-32} \). Panel B shows the Fourier spectrum of \(\mathcal{N}(x) \) (from the exact solution) and \(E^{(0)}(x) \). The rapid decay of the Fourier modes of \(E^{(0)}(x) \) show that the zeroth order approximation does an excellent job of predicting the high-frequency components of \(\mathcal{N}(x) \), but not the low-frequency ones. All further corrections will only be made to the first 50 Fourier modes. In other words, we actually use

\[
\hat{E}^{(n)}_{k} = \begin{cases}
\mathcal{N}_{k} - \sum_{j=0}^{n} [G_j(\eta) \mathcal{D}]_{k} & |k| < 50, \\
\mathcal{N}_{k} - [G_0(\eta) \mathcal{D}]_{k} & |k| \geq 50
\end{cases}
\]

(3.37)

when reconstructing \(E(x) \) in Panels E–H. As a result, the modes marked “unrecoverable error” in Panel B are frozen, and will not be altered by successive corrections. This is reasonable since these modes are dominated by aliasing errors in sampling \(\mathcal{N}(x) \) on the 256-point grid. On a larger grid, if more accuracy were desired, the cutoff would need to be increased. The error plateau in Panel A is due to these aliasing errors.
Panel C shows the magnitude of $\hat{E}_k^{(n)}$ versus k for $n = 50$ and $n = 100$. Each successive correction reduces the error in the leading Fourier modes of the Neumann data. Note that the bulge near $k = 0$ in $\hat{E}_k^{(100)}$ is below 10^{-32}, and therefore additional corrections do not improve the global error, which is dominated by high-frequency modes at that point. The rapid growth of $\hat{E}_k^{(100)}$ above $k = 65$ is due to truncating the Fourier series to $|k| \leq 128$ when computing the Craig-Sulem expansion. Analogous behavior was seen in Figures 3–6, where we observed that errors in the columns of $G_n(f)^\wedge$ propagate inward from high to low wave numbers. Due to the cutoff, these large errors do not affect the reconstruction of $N(x)$. Panel D shows the exact solution $N(x)$ while panels E–H show the errors in various partial sum reconstructions. Because the low-order modes are the least accurate (as seen in Panel C), the corrections are remarkably smooth, non-oscillatory curves. The highly oscillatory error in $E^{(100)}$ is due to the “unrecoverable error” in Panel B; if M were increased, $E^{(100)}$ would also be very smooth. In summary, the Craig-Sulem expansion performs well on this example, converging to the exact solution, up to aliasing errors of order 10^{-32}, in 95 iterations.

3.3 Water wave examples

We conclude with two examples in which the wave profile and velocity potential come from solutions of the water wave problem. The first is a large-amplitude standing water wave shortly before reaching maximum height. The second consists of two Stokes waves of different amplitudes traveling to the right. Both examples can be evolved efficiently using the boundary integral method [29, 32]. Our interest here is whether the DNO expansion method and the two AFM methods can take data (η and D) that are only known to double- or quadruple-precision accuracy and return Neumann data (N) with the same accuracy. We allow ourselves to use additional precision for intermediate calculations.
Figures 11–13 show the calculation of the DNO operator for a large-amplitude standing water wave. We selected the infinite depth wave corresponding to the first local maximum of wave height (half the vertical crest-to-trough distance) for this example. When wavelength is set to \(L = 2\pi \) and the acceleration of gravity is \(g = 1 \), this wave has period \(T = 6.53996 \), wave height \(h = 0.620173 \), crest acceleration \(A_c = 0.926312 \), and fifth Fourier mode of \(\varphi \) at \(t = 0 \) (a good bifurcation parameter in this regime) of \(\hat{\varphi}_5(0) = 0.00245499 \). See [31, 32] for details on how the wave was computed. Since the wave comes to rest at \(t = T/4 \), \(D \equiv 0 \) at that time. Thus, to avoid a trivial DNO calculation while keeping \(\eta \) close to its maximum-amplitude state, we selected the wave profile at \(t = 9T/40 \) for this example. Figure 11 shows snapshots of \(\eta(x,t) \) at equal intervals of size \(\Delta t = T/40 \) over a quarter-period, along with the Dirichlet and Neumann data corresponding to \(t = 9T/40 \).

Figure 12 shows the results of the DNO calculation using the Craig-Sulem method. The left panel shows the error as a function of order for \(0 \leq n \leq 150 \). The middle panel shows the Fourier decomposition of the error at orders \(n = 20, 120 \) and 150, together with the Fourier modes of the “exact” solution. Unlike the results of Figure 10, the zeroth order approximation does not lead to a large improvement in the high-frequency modes (seen as a faster decay rate in \(|\hat{E}_k(0)| \) than \(|\hat{\mathcal{N}}_k| \) in Figure 10).
In fact, $|\hat{E}_k^{(0)}|$ is difficult to distinguish from $|\hat{N}_k|$, so we plotted $|\hat{E}_k^{(20)}|$ instead, which has a similar decay rate but is shifted down slightly. The data for this problem, $\eta(x)$ and $\varphi(x)$, are specified via their leading 750 Fourier modes (recorded in quadruple-precision, i.e. 32 digits). This gives an approximation of the standing wave to 25 digits of accuracy, but is regarded here as specifying the DNO problem with infinite precision. The “exact” solution was computed using the boundary integral method with 2304 collocation points and 212 bits of precision, leading to approximately 40 digits of accuracy. The resulting 1152 Fourier modes of this “exact” solution are labeled \hat{N}_k in the middle panel. The Craig-Sulem expansion was performed using $M = 16384$ grid points for the FFT and 900 bits of precision in intermediate calculations in order to achieve accurate results up to order $n = 150$ for modes $|k| < K/2$, $K = 2304$. This cutoff $|k| < 1152$ was chosen to agree with the last computed mode of the “exact” solution. The right panel shows the error in the 120th order approximation as a function of x. We see that the error is a smooth function of order 10^{-20} that is largest near the crest tip at $x = \pi$. In summary, using 900 bits (271 digits) and $M = 16384$ grid points, the 150th order Craig-Sulem method is able to achieve errors around 10^{-25}, which is comparable to the original standing wave calculation, which was done in quadruple-precision (32 digits) with 2048 grid points using the boundary integral method. Though the Craig-Sulem method is not competitive, it is still remarkable that such a large-amplitude wave would be inside the radius of convergence of the DNO expansion.

Figure 13 shows the same calculation using the AFM and AFM* methods. The same “exact” solution as in Figure 12 was used to measure errors. The large (crest-to-trough) wave height leads to very rapidly-decaying singular values. Nevertheless, using $K = 1024$ modes and $M = 3072$ collocation points with 360 bits (108 digits) of precision, we are able to achieve 25 digits of accuracy in the solution. The AFM and AFM* methods are comparable for cutoffs up to about $k_{\text{cutoff}} = 640$. After that, the error in the AFM method grows rapidly while the AFM* method flattens out. Thus, the AFM* method is somewhat more robust in this example.

The final example of this section consists of two Stokes waves traveling right on a 2π-periodic domain. Initially, one wave is centered at $x = 0$ and the other is
centered at $x = \pi$. The fluid depth is $h = 0.05$ and the parameters of the waves are

<table>
<thead>
<tr>
<th>wave</th>
<th>$\hat{\eta}_1$</th>
<th>$\eta_{\text{max}} - \eta_{\text{min}}$</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.4×10^{-4}</td>
<td>0.028919</td>
<td>0.27349</td>
</tr>
<tr>
<td>2</td>
<td>-3.0×10^{-4}</td>
<td>0.005202</td>
<td>0.23290</td>
</tr>
</tbody>
</table>

(3.38)

where c is the wave speed. Plots of $\eta(x), D(x)$ and $N(x)$ for the superposition of Stokes waves with parameters in (3.38) and fluid depth $h = 0.05$. Figure 14 shows the results of the DNO calculation using the Craig-Sulem method. The recursion (3.14) is modified as follows to account for finite depth:

$$G_0(f) = |D| \tanh(h|D|), \quad Y_s = \begin{cases} |D|^s, & s \text{ even} \\ |D|^s \tanh(h|D|), & s \text{ odd} \end{cases},$$

$$G_n(f) = A_n(f) - \sum_{s=1}^{n-1} \frac{1}{(n-s)!} Y_{n-s} f^{n-s} G_s(f), \quad n = 1, 2, 3, \ldots,$$

$$A_n(f) = \begin{cases} (n!)^{-1} |D|^{n-1} (\tanh(h|D|) D f^n D - |D| f^n G_0), & n \text{ even} \\ (n!)^{-1} |D|^{n-1} (D f^n D - G_0 f^n G_0), & n \text{ odd} \end{cases},$$

$$A_n(f)^{\wedge}_{kj} = \frac{j k^n}{n!} a_{nkj} (f^n)^{\wedge}_{k-j}, \quad a_{nkj} = \begin{cases} \tanh k h - \tanh j h, & n \text{ even} \\ 1 - (\tanh k h)(\tanh j h), & n \text{ odd} \end{cases}.$$

We used $M = 9216$ grid points for the FFT and computed the expansion through order $n = 100$. The “exact” solution was computed via the boundary-integral method in quadruple-precision, which is correct to about 28 digits of accuracy. The Craig-Sulem expansion reaches this level of accuracy at order $n = 90$. The errors then increase (left panel) due to the error growth region crossing the cutoff mode $k = 1750$ at 92nd order (center panel). Increasing M would delay this crossing, but is unnecessary since 90th order is sufficient to reach the accuracy of the underlying “exact” solution. The right panel shows the error as a function of x at order $n = 50$. The error is concentrated near $x = 0$, where $\eta(x)$ is largest. In the region not shown, the error is uniformly less than 10^{-29}, even near $x = \pi$, the location of the second Stokes wave. Thus, most of the work goes into resolving the solution near the larger peak.

Since this last example has finite-depth, we can also use the variant of the transformed field expansion method described in §2.4 to compute the Neumann data from the Dirichlet data. The left panel of Figure 16 shows the error $\|E^{(n)}\|$ from (3.36) in the Neumann data as a function of the order n, as well as the difference
between the \(n\)th order terms from the \(TFE\) and \(CS\) expansions,
\[
\Gamma_n = \| G_n^{\text{TFE}}(\eta) \mathcal{D} - G_n^{\text{CS}}(\eta) \mathcal{D} \|. \quad (3.39)
\]
The error \(\|E^{(n)}||\) reaches a plateau of \(10^{-14}\) for \(n \geq 33\) in double-precision, and \(10^{-29}\) for \(n \geq 88\) in quadruple-precision. As before, the “exact” solution was computed in quadruple-precision using the boundary integral method. The orange markers show that the terms in the TFE expansion agree with the corresponding terms in the CS expansion to roundoff error accuracy. In particular, a plot of \(E^{(50)}(x)\) for the TFE method (not shown) looks identical to that of the CS expansion in the right panel of Figure 15.

We also note in Figure 16 that \(\Gamma_n\) exhibits a downward trend as \(n\) increases, indicating that the terms in the TFE expansion maintain several correct digits of relative accuracy beyond the point that \(\|E^{(n)}||\) reaches the plateau region, i.e. the point where successive terms are smaller in magnitude than the absolute errors of the leading terms. In the double-precision case, most of the error in the plateau region is due to the error in the zeroth order term --- \(\Gamma_0\) is larger than the sum of the other \(\Gamma_n\). In quadruple-precision, \(\Gamma_0\) is still largest, although the \(\Gamma_n\) with \(15 \leq n \leq 30\) are of comparable size. This may be partly due to the cutoff at \(k = 1750\) used in the CS expansion in Figure 15 to eliminate high-frequency noise. Certainly, the rapid growth in \(\Gamma_n\) for \(n \geq 80\) in Figure 16 is due to errors in the CS expansion rather than the TFE expansion. Indeed, \(\|E^{(n)}||\) in Figure 15 grows rapidly for \(n \geq 80\) while it remains flat for \(n \geq 90\) in Figure 16. Recall that a third method (the BIM method) was used for the exact solution in both plots.

The middle and right panels of Figure 16 were used to decide how many grid points to use in the TFE method. We used \(M = 2048, N = 32\) in double-precision and \(M = 4096, N = 48\) in quadruple-precision. These plots show the partial norms
\[
\kappa_{nj} = \sqrt{\sum_k |\alpha_j^{(n)}(k)|^2}, \quad \gamma_{nk} = \sqrt{\sum_j |\alpha^n_j(k)|^2}, \quad (3.40)
\]
where \(\alpha_j^{(n)}(k)\) are the Chebyshev coefficients of the \(k\)th Fourier mode of \(u_n\):
\[
\hat{u}_n(k,y) = \sum_{j=0}^{N} \alpha_j^{(n)}(k) T_j(1 + 2h^{-1}y), \quad (|k| \leq M/2, -h < y < 0).
\]
Recall that \(u(x, y) = \phi(x, (1 + h^{-1}\eta)y + \eta) \) is defined on a rectangle and expanded in powers of \(\varepsilon \), \(u(x, y) = \sum \varepsilon^n u_n(x, y) \), where \(\eta = \varepsilon f \). The partial norms \(\kappa_{nj} \) and \(\gamma_{nk} \) are the norms of the rows and columns of the matrix of Fourier-Chebyshev coefficients of the function \(u_n(x, y) \). To resolve the solution spectrally, the mesh needs to be large enough that the partial norms decay to the desired tolerance as \(k \to M/2 \) or \(j \to N \). As shown in Figure 16, the meshes we selected are sufficient to reach roundoff level tolerances in these limits.

It is worth noting that many fewer grid points are needed in the \(y \)-direction than in the \(x \)-direction, so the price of discretizing the bulk fluid is not as severe as one might imagine. Moreover, as with the BIM method, intermediate calculations can be done in double or quadruple-precision arithmetic to achieve similar levels of accuracy in the solution. The overall running times (in seconds) of the various methods on this example are given in the following table:

<table>
<thead>
<tr>
<th>method</th>
<th>BIM(d)</th>
<th>BIM(q)</th>
<th>TFE(d)</th>
<th>TFE(q)</th>
<th>CS</th>
<th>AFM</th>
<th>AFM-QR</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0.156</td>
<td>3.53</td>
<td>2.46</td>
<td>24.0</td>
<td>2762</td>
<td>11222</td>
<td>920</td>
</tr>
</tbody>
</table>

The code was run on a 3.33 GHz Intel Xeon X5680 system with 12 cores. Here (d) and (q) stand for double and quadruple-precision, and the other methods were run with 360 bits (108 digits) of precision. The running time of AFM* is nearly identical to that of AFM, and the AFM-QR variant will be described below. Clearly, the BIM and TFE approaches are superior to the CS and AFM-based methods since arbitrary-precision arithmetic is not required.

We conclude with the results of the AFM and AFM* methods on this example, which we selected initially as being relevant to water waves and likely to cause difficulties for the AFM and AFM* methods. Our reasoning was that the second wave is large enough to require many Fourier modes to resolve its shape, but small enough that \(\cosh(k\eta(x)) \) is many orders of magnitude larger at the crest of the first wave than at the crest of the second (for large \(k \)). Thus, substantial cancellation must occur near \(x = 0 \) in order to resolve the behavior of \(\phi \) near \(x = \pi \). However, the singular values in the left panel of Figure 17 decay slowly in comparison to the infinite-depth standing wave case of Figure 13. This is because the waves in these two examples have similar Fourier decay rates for \(\hat{\eta}_k \) and \(\hat{\varphi}_k \), but the deep-water
standing wave has a much larger vertical crest-to-trough height. To the extent that this is generally the case for waves in deep versus shallow water, the AFM and AFM* methods appear to be better suited for finite depth problems.

The errors in the AFM and AFM* methods are nearly identical for every choice of pseudo-inverse cutoff in the center panel of Figure 17. Thus, the methods are equally effective at computing the DNO for this example. Beyond $k_{\text{cutoff}} = 970$, the error in the center panel reaches a plateau of 3×10^{-28}. This is due to errors in the “exact” solution. Since this plateau is reached already at $k_{\text{cutoff}} = 970$, it would appear that K and possibly M can be reduced while still achieving the target accuracy of 10^{-28}. However, reducing K leads to worse results (not shown). The reason is that the high-index columns of A in

$$A_{j0} = \frac{1}{M}, \quad \left(A_{j,2k-1} \right) = \frac{\sqrt{2}}{M} \frac{\cosh[k\eta(x_j) + h]}{\cosh[k\eta_{\text{max}} + h]} \left(\frac{\cos kx}{\sin kx} \right), \quad (1 \leq k < K/2)$$

comprise a small but important part of the low-index singular vectors U of the singular value decomposition, $A = USV^T$. A better way to understand how large K needs to be in order to achieve a prescribed accuracy is to perform a QR factorization, $A = QR$, which is a numerically robust way to perform a Gram-Schmidt orthogonalization of the columns of A. We then define the “discrete AFM transform”

$$\tilde{N}_0 = c_0, \quad \tilde{N}_k = c_{2k-1} + ic_{2k}, \quad \{c\}_{k=0}^{K-2} = \frac{1}{\sqrt{M}} Q^T \{N(x_j)\}_{j=0}^{M-1}$$

and, in Figure 18, compare it to the discrete Fourier transform

$$\hat{N}_k = \frac{1}{M} \sum_{j=0}^{M-1} N(x_j) e^{-2\pi ijk}, \quad 0 \leq k \leq M/2.$$

The red curves give the Fourier modes of the input Dirichlet data, which are taken to specify the problem with infinite precision even though they only describe the standing wave and traveling waves to around 25 and 30 digits, respectively. The black curves give the Fourier modes of the boundary integral solutions, which were computed with 212 and 106 bits of precision, respectively. The orange and blue
curves give the “AFM transform” of the Dirichlet and Neumann data. The observation that K cannot be reduced significantly below 2048 for the traveling wave problem is seen clearly in the right panel, which shows that \tilde{N}_k does not reach roundoff error until just below $k = 1024$.

The fact that the AFM coefficients \tilde{D}_k and \tilde{N}_k decay faster than the Fourier coefficients \hat{D}_k and \hat{N}_k suggests that the Gram-Schmidt version of the AFM basis is more efficient at representing the Dirichlet and Neumann data of many problems of physical interest (such as standing and traveling waves) than the Fourier basis. The abrupt change in slope of the orange and blue curves in the left panel occurs when the AFM method begins to resolve errors in the given Dirichlet data, which is taken to be exact even though it only agrees with physical standing waves to 25 digits. While it is interesting that the Gram-Schmidt version of the AFM basis is more efficient than a Fourier basis for these problems, computing the orthogonal AFM basis is expensive since it requires a great deal of additional precision to avoid losing all significant digits during the QR factorization process.

Conclusions We have shown that the Craig-Sulem expansion of the DNO operator, the implicit formulation due to Ablowitz, Fokas and Musslimani, and its dual, due to Ablowitz and Haut, can all be used to compute spectrally accurate solutions of the Dirichlet-Neumann problem. All three methods involve ill-conditioned intermediate calculations when the vertical crest-to-trough distance becomes large relative to the inverse of the highest-frequency wave numbers involved in a Fourier description of the wave profile $\eta(x)$ and the Dirichlet data $\mathcal{D}(x)$. However, this ill-conditioning can be tamed using extended precision arithmetic. Most importantly, $\eta(x)$ and $\mathcal{D}(x)$ need only be specified in double-precision to obtain double-precision results for $\mathcal{N}(x)$; extended precision is only required in intermediate calculations. While it is undesirable to work in extended precision arithmetic, a spectrally accurate method requiring 64 digits of accuracy in intermediate calculations may require less work than a more traditional 16-digit calculation using a 2nd or 4th order method if high accuracy is desired.

Nevertheless, our goal in writing the paper was not to advocate the use of these methods, but to explore their limits of applicability. We originally thought that the

Figure 18. Comparison of the coefficients in an expansion of the Dirichlet and Neumann data in an orthogonalized AFM basis versus a Fourier basis.
AFM and AFM* would break down if the potential ϕ cannot be extended analytically to a strip containing the peak of the wave profile. This was the motivation for studying a potential ϕ with poles on the real axis and a wave profile that dips below the poles but also extends above them. It is surprising that the AFM basis can still be used to approximate \mathcal{D} in this case to arbitrary accuracy, and that the term-by-term Neumann data turns out to be a good approximation of the correct solution. We also did not expect the CS expansion to converge for realistic large-amplitude standing waves, but it was able to achieve 25 digits of accuracy at 150th order. For the same problem, the AFM and AFM* methods achieved 25 digits of accuracy in spite of singular values dropping below 10^{-100}. For waves in shallow water, the condition numbers are much more reasonable, making the AFM methods more appealing.

As noted in [23], the CS expansion suffers from significant cancellations requirements. Our numerical investigations confirm this behavior. We note that a suitable rearrangement of the series permits one to account for some of these cancellations, though not all. One of the goals of the present work was to understand whether this behavior is present in the AFM formulation and to what extent as the AFM method may be interpreted as a certain summation of the CS expansion [1]. Our investigations reveal the AFM method is similarly ill-conditioned. Indeed the rapid decay of singular values in the AFM (and AFM*) method mirrors the cancellation properties observed in the CS expansion. Given the delicate nature of CS, AFM and AFM* we recommend the BIM, especially for two-dimensional flows. The TFE version of the CS expansion also performs remarkably well without the need for extended precision arithmetic in intermediate calculations.

Regarding extension to three dimensions, the CS and TFE expansions work with little change. Since the latter can be run effectively in double-precision, it is a viable method. Although the bulk fluid must be discretized, the system of equations that must be solved decouples into many one-dimensional boundary value problems rather than a large system of equations such as arise in finite element methods. The AFM and AFM* methods will lead to large, highly ill-conditioned linear systems that are easy to set up but nearly impossible to solve. Performing the SVD or QR factorization of such a large matrix in extended precision arithmetic would be extremely costly, and iterative methods such as GMRES will not converge when the condition number grows to 10^{15} or higher. By contrast, the boundary integral method yields condition numbers close to 1; hence, GMRES converges in just a few iterations. Although it is difficult to implement boundary integral methods in three dimensions due to the slowly decaying lattice sums involved, techniques such as Ewald summation [13, 18, 3] are available to accelerate convergence.

Acknowledgments JW was supported in part by the Director, Office of Science, Computational and Technology Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and by the National Science Foundation through grant DMS-0955078. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding sources.

References

Department of Mathematics, University of California, Berkeley CA 94720-3840

Department of Mathematics, Pennsylvania State University, University Park PA 16802