Homework 7
due Thursday, Nov. 29

Work in groups of 2-3. Turn in one assignment per group.
Partial credit will be given, no re-grades.

1. (3 points) Write a spectral code (Fourier collocation, Lec. 23) to solve Burgers’ equation

\[u_t = -uu_x + \nu u_{xx}, \quad (\nu = 0.01), \]

\[u(x,0) = \sin x, \quad (0 \leq x \leq 2\pi), \]

\[u(0,t) = u(2\pi, t) \quad (t > 0) \]

using the six stage, fourth order IMEX Runge-Kutta scheme (ARK4) at the end of Lecture 22 (the coefficients of the scheme are posted on the course webpage). Discretize space with \(N \) equally spaced points \(x_j = 2\pi j/N \), \(0 \leq j < N \). Use the embedded formula of the scheme to implement stepsize control (see Lectures 12 and 16) with tolerances \(\text{Atol} = 1.0 \times 10^{-10}, \text{Rtol} = 0.0 \). For several choices of \(N \) (e.g. 128, 512 and 2048), plot the solutions \(u(x, T_i) \) with \(T_i = 3i/32, \ 0 \leq i \leq 32 \). (Plot them all on the same graph, \(u \) vs. \(x \)). Also plot the magnitude of the first \(N/2 \) Fourier modes \(|\hat{u}_k(T_i)| \). (Plot them all on the same graph \(|\hat{u}_k| \) vs. \(k \), \(0 \leq k \leq N/2 \)). The magnitudes of the highest frequency Fourier modes are a good indication of whether \(N \) is large enough to resolve the solution in space. Note: due to stepsize control, your solution is not likely to land exactly at the given times \(T_i \); use Hermite interpolation (Lecture 16) to interpolate between the times \(t_n \) and \(t_{n+1} \) that step over each \(T_i \). Finally, make a plot of the stepsizes used by your algorithm for the \(N = 2048 \) case.

2. (3 points) Now forget about stepsize control and freeze \(N = 1024 \). Do a convergence study of the solution at time \(T = 1.0 \) by running your code for several values of \(h = \Delta t \) and making a log-log plot of the error vs. \(h \). (Use the result from the smallest timestep for the exact solution and define error \(= \sqrt{\frac{1}{N} \sum_{j=0}^{N-1} |u_j(T) - u(2\pi j/N, T)|^2} \).

I found the following values of \(h \) to work well:

\[h = [1, 2, 3, 4, 6, 8, 12, 16]/8192 \]

Code up the second and fourth order IMEX multistep schemes (SBDF2 and SBDF4 in Lecture 21) and repeat the convergence study calculation for these algorithms. (Use the Runge-Kutta solution to start the multistep methods going). I found SBDF4 was slightly unstable when \(h=16/8192 \) in the above list, and was corrupted by roundoff error when \(h=1/8192 \), so throw away those two data points when computing the convergence rate.
3. (3 points) repeat 1 for the KdV equation:

\[u_t = -uu_x - \nu u_{xxx}, \quad (\nu = 0.01). \]

4. (2 points) repeat 2 for the KdV equation for the ARK4 and SBDF2 schemes.

5. (1 point) The lack of A-stability of the 4th order BDF method makes SBDF4 perform poorly on the KdV equation. Illustrate this by running SBDF4 with \(N = 256, \ h = 1/60000 \) to time \(T = 1 \); plot the resulting \(u(x, T_i) \) and \(|\hat{u}_k(T_i)| \) for \(T_i = i/32, \ 0 \leq i \leq 32 \). (Larger values of \(h \) or \(N \) lead rapidly to \(\text{inf}'s \) and \(\text{NaN}'s \).)