
Practice problems for the final

1. Show the following using just the definitions (and no theorems).

(a) The function

f(x) =

{
x2, x ≥ 0

0, x < 0,

is differentiable on R, while f ′(x) is not differentiable at 0.

Solution: For x > 0 and x < 0, the function is clearly differentiable. We check at x = 0. The
difference quotient is

ϕ(x) =
f(x)− f(0)

x
=
f(x)

x
.

So

ϕ(0+) = lim
x→0+

ϕ(x) = lim
x→0+

x2

x
= 0,

ϕ(0−) = lim
x→0−

ϕ(x) = lim
x→0−

0

x
= 0.

Since ϕ(0+) = ϕ(0−), limx→0 ϕ(x) = 0 and hence f is differentiable at 0 with f ′(0) = 0. So
together we get

f ′(x) =

{
2x, x > 0

0, x ≤ 0.

f ′(x) is again clearly differentiable for x > 0 and x < 0. To test differentiability at x = 0, we
consider the difference quotient

ψ(x) =
f ′(x)− f ′(0)

x
=
f ′(x)

x
.

Then it is easy to see that ψ(0+) = 2 while ψ(0−) = 0. Since ψ(0+) 6= ψ(0−), limx→0 ψ(x)
does not exist, and f ′ is not differentiable at x = 0.

(b) The function f(x) = x3 + x is continuous but not uniformly continuous on R.

Solution: We show that f is continuous at some x = a. That is given ε > 0 we have to find a
corresponding δ.

|f(x)− f(a)| = |x3 + x− a3− a| = |(x− a)(x2 + xa+ a2) + (x− a)| = |x− a||x2 + xa+ a2 + 1|.
Now suppose we pick δ < 1, then |x− a| < δ =⇒ |x| < |a|+ 1, and so

|x2 + xa+ a2 + 1| ≤ |x|2 + |x||a|+ a2 + 1 ≤ 3(|a|+ 1)2.

To see the final inequality, note that |x||a| < (|a| + 1)|a| < (|a| + 1)2, and a2 + 1 < (|a| + 1)2.
Combining with the first equation, we see that

|f(x)− f(a)| < 3(|a|+ 1)2|x− a|.
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Now given any ε > 0, if
|x− a| < ε/3(|a|+ 1)2,

then
|f(x)− f(a)| < ε.

But we also needed |x− a| < 1 in the argument. So define

δ = min
(

1,
ε

3(|a|+ 1)2

)
.

Next, we show that the continuity is not uniform on R. That is we need to show that there
exists ε > 0 such that for any n, there exists points xn and yn such that

|xn − yn| ≤
1

n
, but |f(xn)− f(yn)| > ε.

Simply choose ε = 1, yn = n and xn = n+ 1/n. Then

|f(xn)− f(yn)| =
(
n+

1

n

)3
− n3 +

1

n
= 3n+

4

n
+

1

n3
> 3n > 1.

(c) The sequence of functions

fn(x) =
nx

n+ 1

converges point wise on R, uniformly on bounded intervals (a, b), but does NOT converge uniformly
on R.

Solution: We show that fn(x)→ x point-wise on R.

|fn(x)− x| =
∣∣∣ nx

n+ 1
− x
∣∣∣ =

|x|
n+ 1

.

At x = 0, fn(0) = 0 for all n, and so there is nothing to prove. If x 6= 0, given any ε > 0, we
can pick N large enough so that |x|/(N + 1) < ε. THen for n > N we see that

|fn(x)− x| < ε.

Of course the N depends on x and hence we have only proved point-wise. But notice that if
x ∈ (a, b) in a bounded interval, then there is an M such that |x| < M .Then we can simply
choose N > M/ε, then for any n > N and x ∈ (a, b), it is easy to see that

|fn(x)− x| < ε,

and hence the convergence is uniform on bounded intervals.

We now claim that the convergence is NOT uniform on all of R. That is we need to show that
there exists ε > 0, a subsequence nk →∞ and points xnk

∈ R such that

|fnk
(xnk

)− xnk
| > ε.

For this, let ε = 1, nk = k and xk = k + 2. Then by the calculation above

|fk(xk)− xk| =
|xk|
k + 1

=
k + 2

k + 1
> 1.
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2. Let f : (0, 1) → R be a differentiable function such that |f ′(t)| ≤ 1 for all t. Show that the sequence
an = f(1/n) converges.

Solution: My mean value theorem, since |f ′(t)| ≤ 1, we see that

|an − am| ≤
∣∣∣ 1
n
− 1

m

∣∣∣.
But since {1/n} converges to zero, it is in particular a Cauchy sequence. This shows that the
sequence {an} is Cauchy, and hence must converge.

3. Let

f(x) =

{
x, x ∈ Q
0, otherwise.

(a) Compute the upper and lower integrals on [0, 1].

Solution: Let P = {t0, t1, · · · , tn} be any partition of [0, 1]. Recall that

U(P, f) =

n∑
k=1

Mk(tk − tk−1),

L(P, f) =

n∑
k=1

mk(tk − tk−1),

where
Mk = sup

[tk−1,tk]

f(t), mk = inf
[tk−1,tk]

f(t).

Clearly L(P, f) = 0 for any partition P, and hence L(f) = supP L(P, f) = 0. For the upper
integral, consider the function g(x) = x on [0, 1]. Since rationals are dense in [0, 1] and x ≥ 0, it
follows that U(P, f) = U(P, g)) for all partitions. Hence U(f) = U(g). But since g is integrable
on [0, 1], it follows that

U(g) =

∫ 1

0

x dx =
1

2
.

Hence U(f) = 1/2.

(b) Now do the same for the interval [−1, 1].

Solution: Let

g(x) =

{
0, x ∈ [0, 1]

x, x ∈ [−1, 0)
, h(x) =

{
x, x ∈ [0, 1]

0, x ∈ [−1, 0)
.

Claim. For any partition P of [−1, 1],

L(P, f) = L(P, g), U(P, f) = U(P, h).

Proof. We prove the first equality, the second one is similar. Let P = {t0, · · · , tn} be a
partition of [−1, 1]. Let mk(f) and mk(g) be the infimums of f and g respectively on [tk−1, tk].
Let l ∈ {1, 2 · · · , n} such that 0 ∈ (tl−1, tl]. Then for all k ≤ l, mk(f) = mk(g) = tk−1 and for
all k > l, mk(f) = mk(g) = 0. In either case mk(f) = mk(g) and hence L(P, f) = L(P, g).
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It follows from the claim that L(f) = L(g) and U(f) = U(h). Since g, h ∈ R[−1, 1], we have

L(g) =

∫ 1

−1
g(x) dx =

∫ 0

−1
x dx = −1

2
,

and

U(h) =

∫ 1

−1
h(x) dx =

∫ 1

0

x dx =
1

2
.

Hence L(f) = −1/2 and U(f) = 1/2.

4. Suppose f is a continuous real valued function on [0,∞) which is differentiable on (0,∞) and satisfies

f ′(t) > f(t)

for all t ∈ (0,∞). If f(0) = 1, show that f(t) > et for all t.

Solution: Let g(t) = e−tf(t). By the hypothesis, g is differentiable, and

g′(t) = e−t(f ′(t)− f(t)) > 0.

So g(t) is an increasing function. Since g(0) = f(0) = 1, g(t) > 1 for all t > 0. That is, f(t) > et for
all t > 0.

5. For any ~x = (x1, x2) and ~y = (y1, y2) in R2, define

d(~x, ~y) = max(|x1 − y1|, |x2 − y2|).

(a) Show that (R2, d) is a metric space.

Solution: Positive definiteness and symmetry are trivial. We only need to show the triangle
inequality. It is enough to prove the tirangle inequality for the triple ~x, ~y and ~0. That is, we
need to prove

max(|x1 − y1|, |x2 − y2|) ≤ max(|x1|, |x2|) + max(|y1|, |y2|). (0.1)

Let M = max(|x1|, |x2|) and L = max(|y1|, |y2|). By the triangle inequality for real numbers,

|x1 − y1| ≤ |x1|+ |y1| ≤M + L.

Similarly, |x2 − y2| ≤M + L, and this proves the inequality in (0.1).

(b) Show that
|~x− ~y|√

2
≤ d(~x, ~y) ≤ |~x− ~y|.

Solution: Let M = d(x, y). Then |x1 − y1| ≤M and |x2 − y2| ≤M . But then

|~x− ~y| =
√

(x1 − y2)2 + (x2 − y2)2 ≤
√
M +M = M

√
2.

This shows the first inequality. The second follows from the observation that |~x − ~y| ≥ |x1 −
y1|, |x2 − y2| and hence |~x− ~y| ≥ d(~x, ~y).
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(c) Hence, show that (R2, d) is a complete metric space.

Solution: From part(b), it follows that a sequence ~xn converges to ~p in the metric d if and
only if it converges in the Euclidean metric. Similarly, the sequence is Cauchy in the metric
d if and only if it is Cauchy in the Euclidean metric. Since R2 with the Euclidean metric is
complete, it then follows that (R2, d) is complete.

(d) Also show that a subset K is compact in (R2, d) if and only if it is closed and bounded.

Solution: Similar to part(d). Write up a complete proof on your own.

6. Consider the rectangle R ⊂ R2 formed by the edges x = ±2, y = 0 and y = 1 (here we consider only the
boundary rectangle, and not the interior). We can think of R as a metric space with the metric induced
from R2.

(a) Describe the sets B1(~0) and B≤1(~0).

Solution: The sets

B1(~0) = {(x, 0) | − 1 ≤ x ≤ 1}
B≤1(~0) = {(x, 0) | − 1 ≤ x ≤ 1} ∪ {(0, 1)},

and so clearly the two sets are not equal.

(b) Show that B1(~0) 6= B≤1(~0).

Solution: The point (0, 1) belongs to B≤1(~0) but not B1(~0) and so the two sets are not equal.

(c) On the other hand, show that for any metric space (X, d),

Br(p) ⊆ B≤r(p).

Solution: We need to show that for any q ∈ Br(p), d(p, q) ≤ r, and hence q ∈ B≤r(p). We

argue by contradiction. Suppose there is a q ∈ Br(p) with d(p, q) > r. Let ε > 0 such that
r + ε < d(p, q), and consider the ball Bε(q). Let x ∈ Bε(q). Then

d(p, x) ≥ d(p, q)− d(q, x) ≥ d(p, q)− ε > r.

This shows that Bε(q) does not intersect Br(p), a contradiction since q is a limit point of Br(p).

7. Let (X, d) be a metric space. As usual, denote by S and int(S), the closure and interior of a subset S
respectively. Let F be an arbitrary collection of subsets.

(a) Show that
∪A∈F int(A) ⊆ int(∪A∈FA).

Solution: Let p ∈ ∪A∈F int(A). Then p ∈ int(A) for some A ∈ F . SO there exists an r > 0
such that Br(p) ⊂ A ⊂ ∪A∈FA. Hence p is also an interior point of ∪A∈FA.
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(b) Give an example of a metric space (X, d) and a finite collection of subsets F for which equality does
not hold.

Solution: Let X = R with the usual Euclidean metric. Consider the sets A1 = (0, 1] and
A2 = [1, 2). Then int(A1) ∪ int(A2) = (0, 2) \ {1}, but int(A1 ∪A2) = (0, 2).

(c) Show that
∪A∈FA ⊆ ∪A∈FA.

Solution: Let p ∈ ∪A∈FA. Then p ∈ A for some A ∈ F . So for any r > 0, Br(p) ∩ A 6= φ.
But then Br(p) ∩ (∪A∈FA) is non-empty. SInce this is true for any r > 0, p ∈ ∪A∈FA

(d) Give an example of a metric space (X, d) and a countable collection of subsets F for which equality
does not hold above.

Solution: Again let X be R with the Euclidean metric, and let Ak = (1/k, 1), for k = 1, 2, · · · .
Then

∪∞k=1Ak = (0, 1]

∪∞k=1Ak = [0, 1],

and clearly the first set is strictly smaller than the second one.

(e) Show that if F is a finite collection of sets, then

∪A∈FA = ∪A∈FA.

Solution: Let F = {A1, · · · , AN} be the finite collection os sets. From part(c),

∪Nk=1Ak ⊆ ∪nk=1Ak.

For the reverse inclusion, let p ∈ ∪nk=1Ak. Suppose p /∈ Ak for all k. Then for each k, there
exists rk > 0 such that Brk(p) ∩Ak = φ. Let

r := min(r1, · · · , rN ).

Then Br(p) ⊂ BrkAk, and so Br(p) ∩Ak = φ for all k. This implies that

Br(p) ∩ ∪Nk=1Ak = φ,

and so p /∈ ∪nk=1Ak, a contradiction. So there is at least one k such that p ∈ Ak, and so
p ∈ ∪Nk=1Ak. This shows that

∪nk=1Ak ⊆ ∪
N
k=1Ak,

and hence the two sets must be equal.

8. A point p ∈ X is called a fixed point of a map f : X → X if f(p) = p.

(a) If (X, d) is a compact metric space, and f satisfies

d(f(x), f(y)) < d(x, y),
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for x 6= y, show that f has a fixed point in X and that fixed point is unique. Hint. Consider the
minimum of d(x, f(x)).

Solution: Let g(x) = d(x, f(x)). Then g is a continuous function on X. Let

m = inf
x∈X

g(x).

Since g(x) ≥ 0, note that m ≥ 0. Now, since X is compact, by the extremum value theorem,
the minimum is attained. So there exists a p ∈ X such that m = d(p, f(p)).

Claim. m = 0 and hence f(p) = p. That is, p is a fixed point.

Proof. If not, then m > 0. In particular, f(p) 6= p. But then since f decreases distances,

g(f(p)) = d(f(p), f(f(p))) < d(p, f(p)) = m.

That is, f(p) decreases the value of g(x) further, which is a contradiction since m is the infimum.
Hence m = 0, completing the proof of the claim and the problem.

(b) Show that the statement is no longer true if X is merely assumed to be complete, by considering
the following example - f : (−∞,∞)→ R given by

f(t) = t+
1

1 + et
.

Hint. Show that 0 < f ′(t) < 1 for all t.

Solution: By quotient rule one sees that

f ′(t) = 1− et

(1 + et)2
< 1.

On the other hand since 1 + et > et, we see that

f ′(t) > 1− et

e2t
> 1− e−t > 0

since t > 0. Then by hte mean value theorem for any s > t, there is a point c ∈ (t, s) such that

f(s)− f(t) = f ′(c)(s− t).

Taking absolute values we see that

|f(s)− f(t)| < |s− t|.

Hence f satisfies the hypothesis in part(a), but we claim that f cannot have a fixed. Since if p
is a fixed point then

p = f(p) = p+
1

1 + ep
,

or equivalently
1

1 + ep
= 0,

which is impossible. This shows that compactness was necessary in part(a), and that the
conclusion of part(a) is no longer valid if we only assume X (which in the present case is
(0,∞)) is complete.
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(c) If X is complete, f : X → X, and

d(f(x), f(y)) ≤ αd(x, y)

for some α < 1, then show that there is a unique fixed point in X. Hint. Let x0 ∈ X be any point,
and define xn+1 = f(xn). , and show that if m > n,

d(xm, xn) ≤ αnd(x1, x0)

1− α
.

Solution: As the hint suggests, pick any x0 ∈ X and let xn+1 = f(xn). We first show that
{xn} is a Cauchy sequence. The method of proof is the same as in the final problem in the first
mid-term. We first note that for any k > 0,

d(xk+1, xk) = d(f(xk), f(xk−1)) ≤ αd(xk, xk−1) ≤ α2d(xk−1, xk−2) ≤ · · · ≤ αkd(x1, x0).

For any m > n using triangle inequality, we then estimate,

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + · · ·+ d(xn+1, xn)

≤ d(x1, x0)(αm−1 + αm−2 + · · ·+ αn)

= αnd(x1, x0)(αm−1−n + αm−2−n + · · ·+ α+ 1)

≤ αnd(x1, x0)(1 + α+ α2 + α3 + · · ·+ αm−1−n + αm−n + · · · )

=
αn

1− α
d(x1, x0).

Note that the terms in the bracket in the third line are part of a geometric series, and so by
throwing in all terms in that geometric series, the sum is only made bigger. This explains the
inequality in the fourth line. To go from the fourth to the fifth line, we use the summation
formula for a geometric series, which we can since α < 1.

Now suppose we are given ε > 0. We can also assume that d(x1, x0) 6= 0. SInce if it were zero ,
then x0 would be a fixed point, and we would be done. So if d(x1, x0) 6= 0, then let N such that
for any n ≥ N , αn < ε(1− α)/d(x1, x0). We can do this since limn→∞ αn = 0. So if m,n ≥ N
and m > n then we get that

d(xm, xn) < ε,

and hence the sequence is Cauchy. Since X is complete, xn → p for some p ∈ X.

Claim. f(p) = p. That is, p is a fixed point.

Proof. First note that f is Lipshitz and hence continuous. Now consider g(x) = d(x, f(x)).
Since the distance function is also continuous, g is a continuous function on X. Applying the
above estimate to m = n+ 1, since xn+1 = f(xn),

g(xn) = d(xn, f(xn)) = d(xn, xn+1) ≤ αn

1− α
d(x1, x0).

Letting n→∞, sicne xn → p and αn → 0, we see that

g(p) = lim
n→∞

g(xn) = 0.

But g(p) = 0 =⇒ d(p, f(p)) = 0 and hence p = f(p) since distance function is positive definite.

9. Let K be a compact subset of a metric space (X, d) and F a closed subset.

(a) Show that K ∩ F is a compact subset.
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Solution: Let {xn} be any sequence of points in K ∩F . Then since K is compact, there exists
a subsequence {xnk

} such that limk→∞ xnk
= p, where p ∈ K. Now K being compact is also

closed, and hence K ∩ F is closed. But then since xnk
∈ K ∩ F , p is a limit point of K ∩ F

and so lies in K ∩ F . So we have proved that any sequence {xn} in K ∩ F has a subsequence
converging to a point in K ∩ F . This proves that K ∩ F is compact.

(b) If K ∩ F = φ, show that
inf

x∈K, y∈F
d(x, y) > 0.

Solution: Let α = infx∈K, y∈F d(x, y), and let xn ∈ K and yn ∈ F be a sequence of points
such that

lim
n→∞

d(xn, yn) = α. (0.2)

Since K is compact, there exists a subsequence xnk
→ p ∈ K. Now, suppose α = 0. Then it

follows from (??) that limk→∞ d(p, ynk
) = 0, that is ynk

→ p. So p is a limit point of F . Since
F is closed, this forces p ∈ F . So p ∈ K ∩ F which is a contradiction since K ∩ F = φ. And
hence α > 0.

(c) Providing an example, argue that if K is assumed to be only closed, then the infimum could be
zero.

Solution: Let K = N, and let

F = {n+
1

n
| n ∈ N}.

Then K ∩ F = φ, both K and F are closed, but limn→∞ d(n, n+ 1
n ) = 0, and so

inf
x∈K, y∈F

d(x, y) = 0.

10. Let (X, d) be a metric space.

(a) If pa, · · · , pn be a finite collection of points, show using only the definition that X \ {p1, · · · , pn} is
an open set.

Solution: Given any x ∈ X \ {p1, · · · , pn}, let

r(x) =
1

2
min(d(x, p1), d(x, p2), · · · , d(x, pn)).

Then Br(x)(x) is a ball around x that is contained in X \ {p1, · · · , pn}. This shows that
X \ {p1, · · · , pn} is open.

(b) Give an example of a metric space and a sequence of points {pk} such that X \ {pk}∞k=1 is dense,
infinite but not open.

Solution: Take X = R, and {p1, p2, · · · } to be the set of all rational numbers.

11. Define a sequence of functions on [0, 2] by

fn(x) =

√
x2 + n

x+ n
.
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(a) Show that the sequence converges uniformly to some continuous function f on [0, 2].

Solution: It is clear that fn → 1 pointwise on [0, 2]. We claim that the convergence is uniform.
To see this, note that for any x ∈ [0, 2]

|fn(x)− 1| =
∣∣∣√x2 + n

x+ n
− 1
∣∣∣

=
|
√
x2 + n−

√
x+ n|√

x+ n

=
x|x− 1|

√
x+ n(

√
x2 + n+

√
x+ n)

≤ x|x− 1|
2n

,

since
√
x+ n,

√
x2 + n ≥

√
n. So if Mn = supx∈[0,2] |fn(x)− 1|, then

Mn ≤
1

n
→ 0.

Since limn→∞Mn = 0, it follows that the convergence is uniform.

(b) Compute

lim
n→∞

∫ 2

0

fn(t) dt,

and justify your answer.

Solution: Each fn being continuous, is Riemann integrable on [0, 2]. By the theorem on
uniform convergence and integrability,

lim
n→∞

∫ 2

0

fn(t) dt =

∫ 2

0

lim
n→∞

fn(t) dt =

∫ 2

0

dt = 2.

12. The Riemann zeta function is defined by

ζ(s) =

∞∑
n=1

1

ns
.

Clearly the function is well defined and finite on (1,∞).

(a) Show that the series converges uniformly on [α,∞) for all α > 1.

Solution: F any s ≥ α, n−s ≤ n−α. Since α > 1,
∑
n−α converges, by the Weierstrass M -test

(applied to Mn = n−α), the series converges uniformly on [α,∞).

(b) Show that ζ(s) is differentiable on (1,∞) with

ζ ′(s) = −
∞∑
n=1

ln(n)

ns
.
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Solution: Let

ζn(s) =

n∑
k=1

1

ks
.

Each ζn is differentiable, and by chain rule, since d
dsn
−s = − lnnn−s we have

ζ ′n(s) = −
n∑
k=1

ln k

ks
.

We want to apply the theorem on uniform convergence and differentiation. For this we have to
verify two hypotheses.

• pointwise convergence of ζn. By part(a), it follows that ζn(s) → ζ(s) on [α,∞) (in
fact in part(a) we showed that this convergence is uniform).

• uniform convergence of derivatives. Since α > 1, there exists an ε > 0 such that
α− ε > 1. Now, since

lim
n→∞

lnn

nε
= 0,

it follows that there exists a constant C such that

lnn < Cnε

for all n ∈ N. So for s ∈ [α,∞),
lnn

ns
≤ C 1

nα−ε
.

Since α− ε > 1, the series
∑
n−α+ε converges and so by Weierstrass M -test, the series

−
∞∑
n=1

lnn

ns

converges uniformly on [α,∞). Therefore the sequence ζ ′n(s) (being the partial sums of
the above series) converges uniformly on [α,∞).

Then by the theorem on uniform convergence and differentiation, ζ(s) being the limit of ζn(s)
is differentiable on [α,∞), and moreover,

ζ ′(s) = lim
n→∞

ζ ′n(s) = −
∞∑
n=1

lnn

ns
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