
Solutions to Assignment-7
(Due 07/30)

Please hand in all the 8 questions in red

1. Consider the sequence of functions fn : [0, 1]→ R defined by

fn(x) =
x2

x2 + (1− nx)2
.

(a) Show that the sequence of functions converges pointwise as n→∞, and compute the limit function
f(x).

Solution: For any x ∈ [0, 1],

lim
n→∞

x2

x2 + (1− nx)2
= 0.

If we let Mn = supx∈[0,1] |fn(x)|, then we see that Mn ≥ fn(1/n) = 1, and so limn→∞Mn 6= 0.
Therefore, fn does not converge uniformly to 0 on [0, 1].

(b) Show that the sequence is not equicontinuous on [0, 1].

Solution: Let xn = 1/n and yn = 0. Then |xn − yn| → 0 as n→ 0, but

|fn(xn)− fn(yn)| = 1,

contradicting the definition of equicontinuity for ε = 1.

(c) Which theorem in the notes implies that fn does not converge uniformly to f on [0, 1]?

Solution: We have already shown in part(a) that the convergence is not uniform, but this also
follows from part(b) and Theorem 7.2 on page 7 of the notes for Week-7.

(d) Show that fn
u.c−−→ f on [a, 1] for all a ∈ (0, 1).

Solution: We rewrite

fn(x) =
x2

n2
(
x2

n2 +
(
x− 1

n

)2)
Let N such that 1/N < a/2. Then for all n > N and all x ∈ [a, 1], x− 1/n > a/2 and so

x2

n2
+
(
x− 1

n

)2
>
a2

4
.

Therefore, for n > N and x ∈ [a, 1],

|fn(x)| ≤ 4x2

n2a2
≤ 4

a2
n−2.

1



So if Mn = supx∈[a,1] |fn(x)|, then

0 ≤Mn ≤
4

a2
n−2.

By squeeze principle, limn→∞Mn = 0, and so fn
u.c−−→ 0 on [a, 1] for every a > 0.

2. Let F ⊂ R[0, 1] be the set of all Riemann integrable functions on [0, 1] such that |f(t)| ≤ M for some
fixed M . For any f ∈ F , define I[f ] : [0, 1]→ R by

I[f ](x) =

∫ √x
0

f(t) dt.

(a) Show that the family {I[f ] | f ∈ F} is equicontinuous.

Solution: For any x, y ∈ [0, 1] (say, y ≥ x), we estimate

|I[f ](y)− I[f ](x)| =
∣∣∣ ∫ √y√

x

f(t) dt
∣∣∣

≤
∫ √y
√
x

|f(t)| dt

≤M(
√
y −
√
x).

Now, g(x) =
√
x is uniformly continuous on [0, 1]. So given any ε > 0, there exists δ > 0 such

that
|x− y| < δ =⇒ |√y −

√
x| < ε

M
.

So for this δ,
|x− y| < δ =⇒ |I[f ](y)− I[f ](x)| < ε.

Hence the family {I[f ] | f ∈ F} is equicontinuous.

Note. If F was instead restricted to consist of only continuous functions, then the following
method can be attempted. We can write I[f ](x) = F (

√
x), where F is the anti-derivative

F (u) =

∫ u

0

f(t) dt.

Since f is continuous, by the fundamental theorem, F (u) is differentiable on (0, 1) and contin-
uous on [0, 1], with F ′(u) = f(u). By chain rule,

d

dx
I[f ](x) =

f(
√
x)

2
√
x
.

So the derivative is not necessarily bounded. Hence the usual mean value trick will not work
in this case.

(b) Show that given any sequence of functions {fn} in F , there exists a sub-sequence {fnk
} such that

I[fnk
] converges uniformly on [0, 1].

Solution: Since |f(t)| ≤ M , we see that |I[f ](x)| ≤ M , and hence the family {I[f ] | f ∈ F}
is uniformly bounded. It is also equicontinuous by part(a). So by Arzela-Ascoli, given any
sequence fn ∈ F , there exists subsequence fnk

such that I[fnk
] converges uniformly on [0, 1].
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3. Consider the sequence of functions fn : [0, 2]→ R,

fn(t) =
tn

1 + tn
,

and let Fn : [0, 2]→ R be the anti-derivatives.

(a) Show that fn(t) converges point-wise on [0, 2]. What is the limit function?

Solution: The sequence converges pointwise to f where

f(t) =


0, t ∈ [0, 1)
1
2 , t = 1

1, t ∈ (1, 2].

(b) Argue, by simply looking at the limit function above, that no subsequence converges uniformly on
[0, 2].

Solution: Since each fn is continuous and the limit function is not continuous, by the theorem
on uniform convergence and continuity, no subsequence of fn can converge uniformly to f .

(c) Show that for all x, y ∈ [0, 2],
|Fn(x)− Fn(y)| ≤ |x− y|.

Solution: Since each fn is continuous, by the fundamental theorem of calculus, Fn is differ-
entiable on (0, 2) and continuous on [0, 2]. Moreover |F ′n(x) = fn(x) for all x ∈ (0, 2) and
hence

|F ′n(x)| ≤ 1.

But then by the mean value theorem, since Fn is continuous on [0, 2], for any x, y ∈ [0, 2],

|Fn(x)− Fn(y)| = |F ′n(c)||x− y| ≤ |x− y|,

where c is some number between x and y.

(d) Show that there is a subsequence Fn that converges uniformly on [0.2].

Solution: Since each |fn(t)| ≤ 1 on [0, 2], by the triangle inequality for integrals, for any
x ∈ [0, 2] we have

|Fn(x)| ≤
∫ x

0

|fn(t)| dt ≤ x ≤ 2.

This shows that the sequence {Fn} is uniformly bounded on [0, 2]. On the other hand, by part(c)
above, the sequence is also equicontinuous (simply let δ = ε in the definition of equicontinuity).
So by Arzela-Ascoli, there exists a subsequence that converges uniformly on [0, 2].

4. Let C0[0, 1] denote the set of all continuous real valued functions on [0, 1]. For f, g ∈ C0[0, 1], define

d(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

(a) Show that d defines a metric on C0[0, 1].
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Solution: We need the following basic fact about supremums (a related property of limsup,
was a homework problem) - If f and g are bounded functions on a set E, then

sup
t∈E
|f(t) + g(t)| ≤ sup

t∈E
|f(t)|+ sup

t∈E
|g(t)|

• d(f, g) is finite. Since f and g are continuous and [0, 1] is compact, they are bounded.
So there exists M such that |f(t)|, |g(t)| < M for all t ∈ [0, 1]. But then by the above
property we see that d(f, g) < 2M and hence is finite.

• (Positive definiteness) d(f, g) >≥ 0 and d(f, g) = 0 if and only if f = g. It is clear
that d(f, g) ≥ 0. So suppose d(f, g) = 0. Then by definition of d, |f(t)− g(t)| = 0 for all
t ∈ [0, 1], which shows that f(t) = g(t) for all t ∈ [0, 1].

• (Symmetry) d(f, g) = d(g, f). Obvious!

• (Triangle inequality) d(f, g) ≤ d(f, h) + d(g, h). By the usual triangle inequality for
| · |, for any t ∈ [0, 1],

|f(t)− g(t)| ≤ |f(t)− h(t)|+ |g(t)− h(t)|.

Taking supremum on both sides and using the property above, we prove the required
triangle ienquality.

(b) Show that fn → f in this metric, if and only if fn → f uniformly on [0, 1].

Solution: Note that fn
d−→ f , if and only if for any ε > 0, there exists an N such that

d(fn, f) < ε

whenever n > N . But by definition of the distance function this is equivalent to the statement
that for all ε > 0, there exists an N > 0 such that for all n > N ,

sup
t∈[0,1]

|f(t)− fn(t)| < ε,

which in turn is equivalent to the statement that fn
u.c−−→ f on [0, 1].

(c) Show that (C0[0, 1], d) is a complete metric space, that is every Cauchy sequence is convergent.
Note. A sequence {xn} in a metric space (X, d) is said to be Cauchy ∀ε > 0, there exists N such
that for all n,m > N , d(xn, xm) < ε. We will talk about completeness in more detail in class on
Monday, but this is enough to solve the problem.

Solution: Let {fn} be a Cauchy sequence in (C0[0, 1], d). That is for any ε > 0, there exists
N such that for any n,m > N we have

d(fn, fm) < ε.

By the definition of the distance for any t ∈ [0, 1],

|fn(t)− fm(t)| < ε.

Hence the sequence {fn} is uniformly Cauchy, and so fn → f uniformly on [0, 1] for some
function f . Moreover, since fn is continuous for each n, the limit f will also be continuous and
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hence f ∈ C0[0, 1]. But then by part(b) above, we have that fn
d−→ f , and this shows that any

Cauchy sequence has a limit in C0[0, 1], proviung that the space is complete.

5. Let (X, d) be a metric space. The boundary ∂E and frontier dE of a set E ⊂ X are defined respectively
as

∂E = E \ int(E),

dE = E \ E.

where E is the closure of the set E and int(E) is the interior. Consider the following subset of R2,

E = {(x, y) | 0 < x2 + y2 < 1} ∪ {(x, 0) | 1 ≤ x ≤ 2}.

(a) Draw a neat and labelled diagram in the x-y plane indicating the subset E. Open sets can be
shown with dotted lines.

(b) Write down the sets E, int(E), ∂E and dE.

6. If A and B denote arbitrary subsets of a metric space (X, d), prove the following properties. Here int(A)
denotes the interior of A and A as usual denotes the closure.

(a) int(A) = X −X −A.

Solution: Since Ac ⊂ Ac, clearly X − X −A ⊂ A. Moreover X − X −A is open and so
X − X −A ⊆ int(A) since int(A) is the largest open set contained in A. To complete the
proof, we show int(A) ⊆ X − X −A. So let p ∈ int(A). Then there is some r > 0 such that
Br(p) ⊂ A. So p cannot be a limit point for X − A, and hence cannot belong to X −A, and
hence lies in X −X −A, completing the proof.

(b) If int(A) = int(B) = φ, and A is closed, then int(A ∪ B) = φ. If A is not necessarily closed, given
an example where int(A ∪B) = X.

Solution: Suppose int(A∪B) is non-empty, and let p be a point in the interior. Then there is
some r > 0 such that Br(p) ⊂ A ∪B. If p /∈ A, then p ∈ B, and moreover, since A is closed, p
cannot be a limit point of A. So there is some radius r′ such that Br′(p) does not intersect A.
But then if ε = min(r, r′), then Bε(p) ⊂ A∪B but Bε(p)∩A = φ. So Bε(r) ⊂ B, making p an
interior point of B, a contradiction. Now, suppose p ∈ A. Since int(A) is empty, there is some
q ∈ Br(p) which is not in A. But Ac is open and so there is some r′ such that for any ε < r′,
Bε(q) ⊂ Ac. Choose ε small enough (say smaller r− d(p, q)) such that Bε(q) ⊂ Br(p) ⊂ A∪B.
But then Bε(q) will have to be contained in B making q and interior point of B which is a
contradiction.

To show that one of the sets has to be closed. Consider A = Q and B = R \Q. Then both A
and B have empty interiors, but their union is all of R.

(c) A ∩B ⊆ A ∩B. Given an example of strict inclusion.

Solution: The inclusion follows from 2(a) above, since any limit point of A∩B is also a limit
point of BOTH A and B. For strict inclusion, consider A = (−1, 0) and B = (0, 1). Then
0 ∈ A ∩B, but A ∩B is empty and so has an empty closure.

7. Given A ⊂ (X, d), let L(A) be the set of limit points of A.
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(a) Show that L(A) is closed.

Solution: If not, then there exists a point p ∈ L(A)\L(A). Then there is a sequence of points
xn ∈ L(A) such that xn → p. For each n, since xn ∈ L(A), B1/n(xn) ∩ A is non empty. So
let yn ∈ B1/n ∩ A. Then we claim that yn → p. But then since yn ∈ A, this proves that p is
a limit point of A, which is a contradiction. To prove the claim, let ε > 0. Then there exists
N1 such that d(xn, p) < ε/2 whenever n > N1. Also, let N2 such that 1/N2 < ε/2. Letting
N = max(N1, N2) we see that for n > N ,

d(yn, p) ≤ d(yn, xn) + d(xn, p) <
1

n
+
ε

2
< ε.

(b) Show that if p is a limit point of A∪L(A), then p is also a limit point of A. Is it necessarily a limit
point of L(A)?

Solution: Let p be a limit point of A ∪ L(A), but not of A. That is, p /∈ L(A). Then there
exists an r1 > 0 such that Br(p) ∩ A is either empty or consists of only p. Moreover, since
L(A) is closed, there exists r2 > 0 such that Br(p) ∩ L(A) = φ. So if r = min(r1, r2) > 0,
Br(p)∩(A∪L(A)) is either empty or consists of only p. So p cannot be a limit point of A∪L(A).
Contradiction!

For the second part, the answer is NO. For instance, let A = {1, 12 ,
1
3 , · · · }. Then L(A) = {0},

and 0 is also a limit point of A ∪ L(A). But 0 is an isolated point of L(A).

8. Let (X, dX) and (Y, dY ) be metric spaces. Suppose f : X → Y is a continuous

(a) For any y ∈ Y , show that Zy = {x ∈ X | f(x) = y} is a closed set.

Solution: The singleton set {y} is closed in (Y, dY ). By the characterization of continuity
in terms of inverse images of closed sets (Theorem 8.11(c) in Week-7 notes), it follows that
Zy = f−1({y}) is closed.

(b) Suppose now Y = R with the standard Euclidean metric | · |. If for some p ∈ X, f(p) > 0, then
show that there is some δ > 0 such that for all x ∈ Bδ(p), f(x) > 0.

Solution: Let ε = f(p)/2 > 0. Then since f is continuous, there exists a δ > 0 such that for
all x ∈ Bδ(p),

|f(x)− f(p)| < ε.

But then since f(p) = 2ε, this shows that for all x ∈ Bδ(p),

f(x) > ε > 0.

9. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a continuous function. Prove that

f(E) ⊂ f(E)

for any subset E ⊂ X. Show by example that the inclusion can be strict.
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Solution: Let q ∈ f(E). That is q = f(p) for some p ∈ E. If p ∈ E, then q ∈ f(E) and so there
is nothing to prove. So suppose p ∈ E \ E. Then there exists xn ∈ E such that xn → p. Since f
is continuous f(xn) → f(p). But then q = f(p) ∈ f(E), since f(xn) ∈ f(E). Done! Consider the
function f : R→ R

f(x) =
1

1 + x2
,

and let E = (0,∞). Then f(E) = (0, 1], while f(E) = [0, 1].

10. Show, using only the definition of compactness, that the set

K = { 1

n
| n ∈ N}

is NOT compact, while the set K ∪ {0} is compact.

Solution: Consider the sequence xn = 1/n in K. Then it converges to 0 /∈ K. So any subsequence
also converges to 0. That is, there is no subsequence which converges to a number in K, and hence
K cannot be compact. On the other hand, consider E = K∪{0}. Let {xn} be any sequence in E. If
the sequence is finite, then there is of course a subsequence that is constant, and hence convergent.
So suppose the sequence is infinite. Let n1 such that sn1

6= 0. Then let n2 > n1 such that xn1
< xn2

and xn2 6= 0. Having chosen n1 < n2 < · · · < nk−1, let nk > nk−1 such that xnk
< xnk−1

and
xnk
6= 0. We claim that {x

k
} converges to zero. To see this, let ε > 0 and N such that 1/N < ε.

Since there are N elements in K greater than or equal to 1/N , it follows that there exists some m
such that for all k > m,

0 < xnk
<

1

N
< ε.

This shows that limk→∞ xnk
= 0. So given any sequence {xn} in K we have managed to extract a

subsequence {xnk
} which converges to an element in K, namely, to zero.

11. Let Q be the set of rationals with the usual distance function d(r, s) = |r − s|. Let E be the set of
rationals r satisfying 2 < r2 < 3. Show that E is closed and bounded but not compact. This shows that
the Hein-Borel or Bolzano-Weierstrass theorem is not true in a general metric space.

Solution: Let us denote the induced metric on Q be dQ, and let us denote balls in this metric by
BQ
r (p). That is,

BQ
r (p) = {q ∈ Q | |p− q| < r}.

Now it is easy to see that 3/2 ∈ E and that E ⊂ BQ
1 (3/2), and so E is bounded. For closedness,

suppose q ∈ Q is a limit point of E and suppose q /∈ E. Then either q2 < 2 or q2 > 3 since q2

cannot be equal to 2 or 3. Suppose q2 < 2. Then q <
√

2. Choose ε > 0 such that q + ε <
√

2. But
then BQ

ε (q) ∩ E = φ, and so q could not have been a limit point. Contradiction! The other case is
similar. This shows that E is closed in Q. To show that the set is not compact, consider the decimal
approximations to

√
3. That is d0 = 1, d1 = 7, and having chosen d0, d1, · · · , dn−1, we let dn be the

largest natural number such that

d0 +
d1
10

+ · · ·+ dn
10n

<
√

3.

Then the sequence a1 = d0.d1, a2 = d0.d1d2, · · · , an = d0.d1d2 · · · dn, · · · lies in E but no subsequence
converges to a rational number (in fact every subsequence converges to

√
3, which is of course not

rational).
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12. Recall that C0[0, 1] denotes the set of continuous functions on [0, 1]. We endow it with the usual metric

d(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

Define a function T : C0[0, 1]→ C0[0, 1] by

T [f ](x) =

∫ x

0

f(t) dt.

Let K ⊂ C0[0, 1] be a bounded set.

(a) Show that T is a continuous function. Is it injective? Hint. To show continuity, it is enough to

show (Why?) that if fn
u.c−−→ f , then T [fn]

u.c−−→ T [f ].

Solution: For f, g ∈ C0[0, 1], and any t ∈ [0, 1], by definition,

|f(t)− g(t)| ≤ d(f, g).

So for any x ∈ [0, 1],

|T [f ](x)− T [g](x)| =
∣∣∣ ∫ x

0

[f(t)− g(t)] dt
∣∣∣

≤
∫ x

0

|f(t)− g(t)| dt

≤ d(f, g)

∫ x

0

dt

≤ d(f, g).

Taking supremum over all x ∈ [0, 1], we see that

d(T [f ], T [g]) ≤ d(f, g).

So given an ε > 0, let δ = ε. Then

d(f, g) < δ =⇒ d(T [f ], T [g]) < ε.

This shows that T is a continuous map. We claim that the function is injective. It is enough
to show that if T [f ](x) = 0 for all x ∈ [0, 1], then f(t) = 0 for all t ∈ [0, 1]. To see this, note
that if T [f ](x) = 0 for all x, then for any x, y ∈ [0, 1], x < y,∫ y

x

f(t) dt = 0.

Now, suppose f(t0) > 0 at some point t0 ∈ [0, 1]. Since f is continuous, there exists δ > 0 such
that for any t ∈ (t0 − δ, t0 + δ), f(t) > 0. But then∫ t0+δ

t0−δ
f(t) dt > 0,

which is a contradiction. So there is not point where f is strictly positive. Similarly there is
no point where f is strictly negative. Hence f has to be identically zero.

(b) Show that the set T (K) is a compact subset of C0[0, 1]. Hint. Use the Version-2 of Ascoli-Arzela.
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Solution: Since K is a bounded set, there exists an M such that d(f, 0) < M for all f ∈ K.
Here 0 denotes the zero function, that is the function that vanished on all of [0, 1]. By the
definition of d, this means that

|f(t)| < M, ∀t ∈ [0, 1], ∀f ∈ K.

• Closed. Trivially since it is the closure of a set.

• Bounded. For any f ∈ K, since |f(t)| < M for all t ∈ [0, 1], we see that

|T [f ](x)| =
∣∣∣ ∫ x

0

f(t) dt
∣∣∣

≤
∫ x

0

|f(t)| dt

< M,

and so
d(T [f ], 0) < M.

This shows that T (K) is bounded, and hence T (K) is also bounded.

• Equicontinuous. Let ε > 0, and δ = δ(ε) to be picked later. For any f ∈ C0[0, 1], by
the fundamental theorem of calculus, T [f ] is differentiable on [0, 1], and moreover,

T [f ]′(x) = f(x).

So if f ∈ K, we have that
|T [f ]′(x)| < M

for all x ∈ [0, 1]. Then by the mean value theorem, for any x, y ∈ [0, 1],

|T [f ](x)− T [f ](y)| < M |x− y|.

Another way to see this is to directly estimate the integral. That is if x, y ∈ [0, 1] with
say x > y, then

|T [f ](x)− T [f ](y)| =
∣∣∣ ∫ x

y

f(t) dt
∣∣∣

≤
∫ x

y

|f(t)| dt

< M |x− y|.

In any case, if we take δ = ε/M , then

|x− y| < δ =⇒ |T [f ](x)− T [f ](y)| < ε.

This shows that T (K) is equicontinuous. To see that the closure is also equicontinuous,
we use the ε/3 trick. So let ε > 0, and δ = ε/3M . Then by the abvove argument for any
f ∈ K,

|x− y| < δ =⇒ |T [f ](x)− T [f ](y)| < ε

3
.

Now if g ∈ T (K), there exists an f ∈ K such that d(T [f ], g) < ε/3. That is for any
x ∈ [0, 1],

|T [f ](x)− g(x)| < ε

3
.
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Then if |x− y| < δ,

|g(x)− g(y)| ≤ |g(x)− T [f ](x)|+ |T [f(x)− T [f ](y)|+ |T [f ](y)− g(y)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

So given an ε > 0, there exists a δ = δ(ε) (in this case δ = ε/3M works) such that for
any g ∈ T (K),

|x− y| < δ =⇒ |g(x)− g(y)| < ε,

and hence T (K) is equicontinuous.

Then by the version-2 of Arzela-Ascoli, the set T (K) is compact.

13. This exercise shows that even in a complete metric, a closed and bounded set need not be compact. Let

l∞(R); = {{ak}∞k=1 | ak ∈ R, and sup
k
ak <∞}.

That is, l∞(R) is the set of all bounded sequences of real numbers. Note that the M will vary from
sequence to sequence. For two sequences A = {an} and B = {bn}, define

d(A,B) = sup
k
|ak − bk|.

(a) For any two sequences A,B ∈ l∞(R), show that d(A,B) is a finite number.

Solution: Suppose A = {an} and B = {bn}. Let α = sup |an| and β = sup |bn|, which are
finite since A,B ∈ l∞(R). Then for any n,

|an − bn| ≤ |an|+ |bn| ≤ α+ β.

Hence the sup is finite and d(A,B) is finite.

(b) Show that d is a metric on l∞(R).

Solution: The symmetry axiom is trivial. Suppose A = {ak} and B = {bk}. THen clearly
d(A,B) ≥ 0. Also if d(A,B) = 0, then clearly ak = bk for all k and so A = B. This shows
that d is positive definite. For the triangle inequality, note that if A = {ak}, B = {bk} and
C = {ck} are three elements, for each fixed k,

|ak − ck| ≤ |ak − bk|+ |bk − ck|.

Taking sup it follows that d(A,C) ≤ d(A,B) + d(B,C) which verifies the triangle inequality.
Next we show completeness.

(c) Let En be the sequence with 1 at the nth place and zero everywhere else, and let O be the sequence
with zeroes everywhere. What is d(En, O)? d(En, Em) for n 6= m?

Solution: From the definition, d(En, O) = 1 and d(En, Em) = 1 whenever n 6= m.

(d) Show that the set B1(O) is closed and bounded, but not compact. Hint. Show that the sequence
En from above has no limit point.
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Solution: Consider the sequence {En}from above. Then d(En, 0) = 1, the sequence is con-
tained in B1(O). Next, since d(En, Em) = 1 for all n 6= m, clearly the sequence En is not
Cauchy and cannot have a limit point. But every infinite sequence in a compact metric space
has a limit point, and so B1(O) cannot be compact.
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An application of Arzela-Ascoli to differential equations

The problems in this section are only for the purpose of entertainment, and will not have any bearing
whatsoever on your performance in this course.

Our aim (following Rudin, exercise 7.25) is to show that there exists a function u : [0, 1]→ R, continuous
on [0, 1] and differentiable on (0, 1) solving the following initial value problem (IVP){

u′(t) = sin(u(t)),

u(0) = c.

For a fixed n, and i = 0, 1, · · · , n, put ti = i/n, and let un : [0, 1]→ R be the continuous function defined by
un(0) = c and such that

u′n(t) = sin(un(ti)), ti < t < ti+1.

You should think of un as the nth approximation solution to the equation. Essentially, starting at x0, between
xi and xi+1, the graph of un consists of straight line segments with slopes given by sin(un(xi)) (graph the
first few functions, say u1 and u2). Note that un is differentiable everywhere except at t = ti.

Next, define

∆n(t) =

{
u′n(t)− sin(un(t)), t 6= ti

0, otherwise.

So ∆n measures how far our approximate solutions are from being actual solutions. Moreover, by the
definition of ∆n,

un(t) = c+

∫ t

0

[sin(un(t)) + ∆n(t)] dt.

1. Show that on [0, 1], |u′n(t)| ≤ 1 (wherever it exists), |∆n(t)| ≤ 2, ∆n(t) ∈ R[0, 1], and |un(t)| ≤ |c|+ 1.

2. {un} is equicontinuous on [0, 1]. Note. You cannot directly apply mean value theorem, since un is not
differentiable everywhere on [0, 1].

3. From this deduce that there exists a subsequence, say {unk
} which converges uniformly to some u on

[0, 1].

4. Prove that sin(unk
(t))

u.c−−→ sin(u(t)) on [0, 1].

5. From this deduce that ∆nk
(t)

u.c−−→ 0 on [0, 1], since

∆n(t) = sin(un(ti))− sin(un(t))

on (ti, ti+1). Note. You have to show that the entire sequence ∆n(t) converges uniformly to zero, not
just ∆nk

(t).

6. Hence, show that

u(t) = c+

∫ t

0

sin(u(t)) dt.

From this, conclude that u(t) solves the initial value problem. Why will this argument not work, if
you can only establish pointwise convergence of {unk

}?
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