Assignment-5

(Due 07/23)

Only submit the questions in red.

1. Suppose f is a bounded real valued function on $[a, b]$ such that $f^{2} \in \mathcal{R}[a, b]$. Does it follow that $f \in \mathcal{R}[a, b]$? Does the answer change if we assume $f^{3} \in \mathcal{R}[a, b]$? Either give a proof or provide a counter example in each of the two cases.

Solution: No to the first part. Consider

$$
f(x)=\left\{\begin{array}{l}
1, x \in \mathbb{Q} \\
-1, \quad \text { otherwise } .
\end{array}\right.
$$

Then $f^{2}=1$ everywhere and so is integrable, but f is discontinuous everywhere and hence is nonintegrable. For the second part, the answer is yes. COnsider the continuous function $\varphi(x)=x^{1 / 3}$. Then if f^{3} is integrable, by the theorem on composition, $\varphi \circ f^{3}=f$ is also integrable.
Remark. This reasoning does not work for the first part, since if you let $\varphi(x)=x^{1 / 2}$ (which is continuous), then $\varphi \circ f^{2}=|f|$ and not f.
2. Let

$$
f(x)=\left\{\begin{array}{l}
x^{2}, x \in \mathbb{Q} \\
0, \text { otherwise }
\end{array}\right.
$$

(a) Calculate the upper and lower integrals $U(f)$ and $L(f)$ for f on $[0, b]$.

Solution: For any partition \mathcal{P} it is clear that $L(\mathcal{P}, f)=0$ and hence $L(f)=0$.
Claim. $U(f)=b^{2} / 3$.
Proof. Consider the function, $g(x)=x^{2}$ for all $x \in[0, b]$. Since rationals are dense, for any partition $\mathcal{P}, U(\mathcal{P}, f)=U(\mathcal{P}, g)$. In particular, $U(f)=U(g)$. But g, being continuous, is clearly integrable on $[0, b]$ and so

$$
U(g)=\int_{0}^{b} x^{2} d x=\frac{b^{3}}{3}
$$

Hence $U(f)=b^{2} / 3$.
(b) Is f integrable on $[0, b]$. Answer the question, solely based on your calculations in part(a), and not by quoting a theorem that we might have learnt in class.

Solution: Since $U(f) \neq L(f), f$ is not integrable.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(t)=\left\{\begin{array}{l}
2^{-n}, 2^{-n-1}<t \leq 2^{-n} \\
0, t=0
\end{array}\right.
$$

Show that $f \in \mathcal{R}[0,1]$ by showing that given any $\varepsilon>0$, there exists a partition P such that

$$
U(P, f)-L(P, f)<\varepsilon
$$

and without appealing to the theorem of Lebesgue.

Solution: Let $\varepsilon>0$. Consider the interval $[\varepsilon / 2,1]$. Then f has only finitely many discontinuities on this interval, and so by the proof of the Theorem on continuity and integrability discussed in class, there is a partition P^{\prime} of $[\varepsilon / 2,1]$ such that

$$
U\left(P^{\prime}, f\right)-L\left(P^{\prime}, f\right)<\frac{\varepsilon}{2}
$$

Now let $P=\{0, \varepsilon / 2\} \cup P^{\prime}$. Then P is a partition of the interval $[0,1]$. Let $M=\sup _{t \in[0, \varepsilon / 2]} f(t)$ and $m=\inf _{t \in[0, \varepsilon / 2]} f(t)$. Clearly, $M<1$ and $m=0$. Then

$$
U(P, f)-L(P, f)=(M-m) \frac{\varepsilon}{2}+U\left(P^{\prime}, f\right)-L\left(P^{\prime}, f\right)<\varepsilon
$$

4. (a) Let $f \in \mathcal{R}[a, b]$ and $\left\{p_{1}, \cdots p_{n}\right\}$ be a finite collection of points in $[a, b]$. Let $g:[a . b] \rightarrow \mathbb{R}$ be a bounded function such that

$$
f(t)=g(t)
$$

for all $t \in[a, b] \backslash\left\{p_{1}, \cdots, p_{n}\right\}$. Show that $g \in \mathcal{R}[a, b]$ and that

$$
\int_{a}^{b} g(t) d t=\int_{a}^{b} f(t) d t
$$

Hint. Do it for one point at a time.
Solution: Let us assume that $n=1$, and denote $p_{1}=p$. The general case follows by a repeated use of the argument below. Let us also put $h=f-g$. Since $g=f-h$, it is enough to show that $h \in \mathcal{R}[a, b]$ and that

$$
\int_{a}^{b} h(t) d t=0
$$

Note that $h(t)=0$ for all $t \neq p$. If $h(p)=0$, there is nothing to prove. So suppose $h(p) \neq 0$. For simplicity, let us also assume that $p \in(a, b)$. If p is one of the boundary points, the argument is even easier. Then given $\varepsilon>0$, let

$$
\delta=\min \left(\frac{p-a}{2}, \frac{\varepsilon}{4|h(p)|}, \frac{b-p}{2}\right)
$$

and consider the partition,

$$
P=\left\{t_{0}=a, t_{1}=p-\delta, t_{2}=p+\delta, t_{3}=b\right\}
$$

Then

$$
U(P, h) 2 M_{2} \delta, L(P, h)=2 m_{2} \delta
$$

But since $M_{2}, m_{2} \leq|h(p)|$,

$$
|U(P, h)|,|L(P, h)| \leq 2|h(p)| \delta<\frac{\varepsilon}{2}
$$

In particular,

$$
U(P, h)-L(P, h)<\varepsilon
$$

So for any $\varepsilon>0$ we have a partition for which the difference in the upper and lower sums is smaller than ε. This shows that h is integrable. Moreover, we know that the integral is sandwiched between the upper and the lower sums and hence it follows from the above estimates that

$$
-\varepsilon<\int_{a}^{b} h(t) d t<\varepsilon
$$

But since this si true for all $\varepsilon>0$, it forces the integral to be zero.
(b) Is the conclusion true, if we instead have a countable collection of points $\left\{p_{n}\right\}_{n=1}^{\infty}$?

Solution: No. Consider $f(t)=1$ on $[0,1]$ and

$$
g(t)= \begin{cases}1, & t \in \mathbb{R} \backslash \mathbb{Q} \\ 0, & t \in \mathbb{Q}\end{cases}
$$

5. (a) If $f \in \mathcal{R}[0,1]$, show that

$$
\int_{0}^{1} f(t) d t=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)
$$

Solution: Let $\varepsilon>0$. We need to show the following -
Claim. There exists an integer N such that for all $n>N$,

$$
\left|\int_{0}^{1} f(t) d t-\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)\right|<\varepsilon
$$

Proof. By Theorem 5.1 in the notes, since $f \in \mathcal{R}[0,1]$, there exists a $\delta>0$ such that for any partition P with $|P|<\delta$, we have that

$$
U(P, f)-L(P, f)<\varepsilon
$$

Now consider the partition P_{n} given by subdividing [0,1] into n subintervals of equal length $1 / n$. That is,

$$
P_{n}=\left\{0, \frac{1}{n}, \frac{2}{n}, \cdots, 1\right\}
$$

Then cleary if N is an integer such that $N>1 / \delta$, then for any $n>N$ we have that $\left|P_{n}\right|<\delta$. Applying the above consequence of THem 5.1, we see that

$$
U\left(P_{n}, f\right)-L\left(P_{n}, f\right)<\varepsilon
$$

But from the definition it follows that

$$
\begin{aligned}
& L\left(P_{n}, f\right) \leq \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \leq U\left(P_{n}, f\right) \\
& L\left(P_{n}, f\right) \leq \int_{a}^{b} f(t) d t \leq U\left(P_{n}, f\right)
\end{aligned}
$$

The first set of inequalities hold since on any interval $I_{k}=\left[\frac{k-1}{n}, \frac{k}{n}\right]$ if like usual we set $M_{k}=$ $\sup _{I_{k}} f(t)$ and $m_{k}=\inf _{I_{k}} f(t)$, then

$$
m_{k} \leq f\left(\frac{k}{n}\right) \leq M_{k}
$$

But now since $0 \leq U\left(P_{n}, f\right)-L\left(P_{n}, f\right)<\varepsilon$, the claim is proved from the above two inequalities. Again, it is good to visualize the upper and lower sums as floors of a building, and the integral and the right side approximation sum lie between these two floors.
(b) Give an example of a bounded function $f:[0,1] \rightarrow \mathbb{R}$ for which the limit on the right exists, but f is not Riemann integrable.

Solution: Consider

$$
f(x)= \begin{cases}0, & x \in \mathbb{Q} \\ 1, & x \notin \mathbb{Q}\end{cases}
$$

Then the sum on the right is always 0 , and hence in particular the limit is also zero, while the function is not Riemann integrable.
(c) Use part(a) to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}
$$

Solution: We write

$$
\frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}=\frac{1}{n} \sum_{k=1}^{n} \frac{\sqrt{n}}{\sqrt{k}}=\frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)
$$

where we let $f(x)=\frac{1}{\sqrt{x}}$. Then by $\operatorname{part}(\mathrm{a})$,

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}=\int_{0}^{1} \frac{d x}{\sqrt{x}}=2
$$

6. (a) Let f be a continuous real valued function on $[a, b]$. Show that there exists a $c \in[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

Solution: By the fundamental theorem of calculus

$$
F(x)=\int_{a}^{x} f(t) d t
$$

is differentiable on $[a, b]$ and $F^{\prime}(x)=f(x)$. By the mean value theorem, there exists a $c \in[a, b]$ such that

$$
(b-a) F^{\prime}(c)=F(b)-F(a)
$$

whcih is what we want.
(b) More generally, if f is continuous on $[a, b], g \in \mathcal{R}[a, b]$ and g does not change sign (you can assume $g \geq 0$), then prove that exists a $c \in[a, b]$ such that

$$
\int_{a}^{b} f(t) g(t) d t=f(c) \int_{a}^{b} g(t) d t .
$$

Hint. Let $I=\int_{a}^{b} g(t) d t \neq 0$ and $f[a, b]=[m, M]$. The proof is easy if $I=0$. If $I \neq 0$, show that

$$
m<\frac{1}{I} \int_{a}^{b} f(t) g(t) d t<M,
$$

and use intermediate value theorem. There is also a much neater way to do this using change of variable. Can you figure it out?

Solution: As in the hint, let $I=\int_{a}^{b} g(t) d t$. Since $m<f(t)<M$, and $g \geq 0$, we have that $m g(t) \leq f(t) \leq M g(t)$ for all $t \in(a, b)$. Integrating we get

$$
m I \leq \int_{a}^{b} f(t) g(t) d t<M I
$$

If $I=0$, then it follows that $\int_{a}^{b} f(t) g(t) d t=0$, and there is nothing to prove. So suppose $I \neq 0$. Then

$$
m \leq \frac{1}{I} \int_{a}^{b} \leq M
$$

Then by intermediate value theorem, since f is continuous, it follows that there is some $c \in(a, b)$ such that

$$
f(c)=\frac{1}{I} \int_{a}^{b} f(t) g(t) d t
$$

7. Let $f:[1, \infty) \rightarrow(0, \infty)$ be a continuous, decreasing function such that $\lim _{x \rightarrow \infty} f(x)=0$. Denote

$$
s_{n}=\sum_{k=1}^{n} f(k), I_{n}=\int_{1}^{n} f(t) d t, d_{n}=s_{n}-I_{n}
$$

(a) Show that $f(n)+I_{n} \leq s_{n} \leq f(1)+I_{n}$.

Solution: We can write

$$
I_{n}=\sum_{k=1}^{n-1} \int_{k}^{k+1} f(x) d x
$$

For any $x \in[k, k+1]$,

$$
f(k+1) \leq f(x) \leq f(k)
$$

Integrating the first inequality from k to $k+1$,

$$
f(k+1) \leq \int_{k}^{k+1} f(x) d x
$$

and so

$$
\begin{aligned}
I_{n} & \geq \sum_{k=1}^{n-1} f(k+1) \\
& =s_{n}-f(1)
\end{aligned}
$$

or equivalently,

$$
s_{n} \leq I_{n}+f(1) .
$$

This proves the right side of the inequality. For the left side, we integrate the second inequality above, and obtain that

$$
I_{n} \leq \sum_{k=1}^{n-1} f(k)=s_{n}-f(n),
$$

or equivalently

$$
I_{n}+f(n) \leq s_{n} .
$$

(b) (Integral test for convergence) Hence show that $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.

Solution: Firstly recall that $\int_{1}^{\infty} f(x) d x$ converges if and only

$$
\lim _{R \rightarrow \infty} \int_{1}^{R} f(x) d x
$$

exists. Since $f(x) \geq 0$, this limit exists if and only if $\int_{1}^{R} f(x) d x$ is bounded by a constant independent of R. Or equivalently,

$$
\int_{1}^{\infty} f(x) d x \text { converges } \Longleftrightarrow\left\{I_{n}\right\} \text { is bounded. }
$$

Now the conclusion follows from the following chain of equivalences

$$
\begin{aligned}
\sum f(n) \text { converges } & \Longleftrightarrow\left\{s_{n}\right\} \text { converges } \\
& \Longleftrightarrow\left\{s_{n}\right\} \text { is bounded } \quad(\text { since } f(n) \geq 0) \\
& \Longleftrightarrow\left\{I_{n}\right\} \text { is bounded } \\
& \Longleftrightarrow \int_{1}^{\infty} f(x) d x \text { converges } .
\end{aligned}
$$

(c) Use the above test, to find all possible values of p and q for which the following series converge.

1. $\sum_{n=2}^{\infty} \frac{1}{n^{p}(\ln n)^{q}}$

Solution: There are many cases we need to deal with. Before that we start with the following simple observation, that for any $\alpha>0$, there exists an $N>0$ (possibly depending on α) such that

$$
\ln (n)<n^{\alpha}
$$

for all $n>N$. This follows from the fact that $\lim _{n \rightarrow \infty} \ln (n) / n^{\alpha}=0$, which itself can be proved by an application of L'Hospital. With this out of the way, we have the following three cases.

- $p>1$. In this case if $q \geq 0$, then since $\ln (n) \geq 1$ for all $n>3$,

$$
\frac{1}{n^{p}(\ln (n))^{q}}<\frac{1}{n^{p}}
$$

for $n>3$. So by comparison theorem, the series converges. If on the other hand, $q<0$, let $r=-q$. Then $r>0$, and

$$
\frac{1}{n^{p}(\ln n)^{q}}=\frac{(\ln n)^{r}}{n^{p}}
$$

By the above observation, for any $\alpha>0$, there exists and N such that for any $n>N$, $(\ln n)^{r}<n^{\alpha r}$, and so

$$
\frac{(\ln n)^{r}}{n^{p}}<\frac{1}{n^{p-\alpha r}}
$$

Since $p>1$, we can choose $\alpha>0$ small enough so that $p-\alpha r>1$. For such a choice of α, the series $\sum n^{\alpha r-p}$ converges. But then by the comparison test, the original series converges. To sum up, in this case, the series converges no matter what the value of q is.

- $p=1$. Here the series reduces to

$$
\sum \frac{1}{n(\ln n)^{q}}
$$

Let $f(x)=1 / x(\ln x)^{q}$. Then f is a non-negative decreasing function on $[2, \infty)$. By the integral test, the given series converges if and only if $\int_{2}^{\infty} f(x) d x$ converges. But by change of variables $u=\ln x$, we see that

$$
\int_{2}^{R} f(x) d x=\int_{\ln 2}^{\ln R} \frac{d u}{u^{q}}
$$

and so the integral, and hence the series, converges if and only if $q>1$.

- $p<1$. In this case if $q \leq 0$, for any $n>3$,

$$
\frac{1}{n^{p}(\ln n)^{q}}>\frac{1}{n^{p}}
$$

Since $\sum n^{-p}$ diverges for $p<1$, by the comparison test, the given series also diverges. If $q>0$, then for any $\alpha>0$, there exists an N such that for any $n>N,(\ln n)^{q}<n^{\alpha q}$, and so

$$
\frac{1}{n^{p}(\ln n)^{q}}>\frac{1}{n^{p+\alpha q}}
$$

Since $p<1$, one can choose $\alpha>0$ small enough so that $p+\alpha q<1$, and then the series

$$
\sum \frac{1}{n^{p+\alpha q}}
$$

diverges. Again by comparison test, the original series diverges. So to sum up, if $p<1$, the series diverges no matter what the value of q.

So finally the series converges if and only if

$$
(p, q) \in\{p>1, q \in \mathbb{R}\} \cup\{p=1, q>1\}
$$

2. $\sum_{n=3}^{\infty} \frac{1}{n \ln n(\ln \ln n)^{p}}$.

Solution: Consider the function

$$
f(x)=\frac{1}{x \ln x(\ln \ln x)^{p}}
$$

Clearly it is decreasing and positive on $x \geq 3$. Also, note that if we let $u=\ln \ln x$, then $d u=d x /(x \ln x)$, and so by change of variables formula,

$$
\int_{3}^{R} f(x) d x=\int_{\ln \ln 3}^{\ln \ln R} u^{-p} d u
$$

Clearly the second integral has a limit as $R \rightarrow \infty$ if $p>1$, and so by the integral test, the series converges if and only if $p>1$.
8. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous function, and let $p, q:[c, d] \rightarrow[a, b]$ be continuous functions, differentiable on the interior (c, d). Define

$$
F(x)=\int_{p(x)}^{q(x)} f(t) d t
$$

Show that F is continuous on $[c, d]$ and differentiable on (c, d), and that

$$
F^{\prime}(x)=f(q(x)) q^{\prime}(x)-f(p(x)) p^{\prime}(x)
$$

Hint. Write F as a composition of two functions, one of which can be differentiated using the fundamental theorem of calculus. Then properties of F follow from corresponding properties of compositions.

Solution: Let $h(x)$ be an antiderivative of f. That is, $h^{\prime}(x)=f(x)$. Then by the second fundamental theorem of calculus,

$$
F(x)=h(q(x))-h(p(x)) .
$$

By chain rule,

$$
\begin{aligned}
F^{\prime}(x) & =h^{\prime}(q(x)) q^{\prime}(x)-h^{\prime}(p(x)) p^{\prime}(x) \\
& =f(q(x)) q^{\prime}(x)-f(p(x)) p^{\prime}(x)
\end{aligned}
$$

(b) Now, let $F:(0, \pi) \rightarrow \mathbb{R}$ be defined by

$$
F(x)=\int_{\sin x}^{1} \ln t d t
$$

Calculate $F^{\prime}(\pi / 4)$ and $F^{\prime}(\pi / 2)$ in two ways. First, by evaluating the integral, and then differentiating. And second, by using part(a) above. Your answers should of course be the same.

Solution:

- Direct calculation. By integration by parts, it is easy to see that

$$
\int \ln t d t=t \ln t-t
$$

and so

$$
F(x)=-\sin x \ln (\sin x)+\sin x-1
$$

Differentiating, we see that

$$
F^{\prime}(x)=-\cos x \ln (\sin x)
$$

and so

$$
F^{\prime}\left(\frac{\pi}{4}\right)=\frac{\ln 2}{2 \sqrt{2}}, F^{\prime}\left(\frac{\pi}{2}\right)=0
$$

- Using part(a). By the formula in part(a), with $q(x)=1$ and $p(x)=\sin x$,

$$
F^{\prime}(x)=-\cos x \ln (\sin x)
$$

and so we have the same formula as above.
9. (a) Let $f(x)=|x|$, and define $F(x)=\int_{-1}^{x} f(t) d t$. Find a piecewise algebraic formula for $F(x)$. Where is F continuous? Where is it differentiable? Where does $F^{\prime}=f$?

Solution:

- $x<0$. In that case $|t|=-t$ for all $t \in[-1, x]$ and so

$$
F(x)=-\int_{-1}^{x} t d t=\frac{1}{2}-\frac{x^{2}}{2} .
$$

- $x \geq 0$. In this case,

$$
F(x)=-\int_{-1}^{0} t d t+\int_{0}^{x} t d t=\frac{1}{2}+\frac{x^{2}}{2}
$$

So $F(x)=\frac{1+x|x|}{2}$.
(b) Now repeat part(a) with

$$
f(x)=\left\{\begin{array}{l}
1, x<0 \\
2, x \geq 0
\end{array}\right.
$$

Solution:

- $x<0$. Then

$$
F(x)=\int_{-1}^{x} d t=1+x
$$

- $x \geq 0$. Then

$$
F(x)=\int_{-1}^{0} d t+2 \int_{0}^{x} d t=1+2 x
$$

10. Calculate $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$. Give complete justifications, quoting any theorems that might have been used.

Solution: Since $e^{t^{2}}$ is continuous, the function

$$
F(x)=\int_{0}^{x} e^{t^{2}} d t
$$

is differentiable on \mathbb{R}, and moreover $F^{\prime}(x)=e^{x^{2}}$. In particular $F^{\prime}(0)=1$. On the other hand, by definition,

$$
1=F^{\prime}(0)=\lim _{x \rightarrow 0} \frac{F(x)-F(0)}{x}=\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t
$$

11. Find the set of all values of p for which the following improper integrals converge.
12. $\int_{0}^{1} \frac{1-\sin x}{x^{p}}$.

Solution: Since $1<\pi / 2$, clearly, $1-\sin x$ decreases on $[0,1]$ and so $0<1-\sin 1<1-\sin x \leq 1$ for all $x \in[0,1]$. So

$$
\frac{1-\sin 1}{x^{p}}<\frac{1-\sin x}{x^{p}} \leq \frac{1}{x^{p}},
$$

and by the comparison test, the given integral converges if and only if $\int_{0}^{1} x^{-p} d x$ converges, which means if and only if $p<1$.
2. $\int_{0}^{\infty} \frac{\ln (1+x)}{x^{p}}$.

Solution: We need to analyze near 0 and infinity separately. That is, we write

$$
\int_{0}^{\infty} \frac{\ln (1+x)}{x^{p}}=\int_{0}^{1} \frac{\ln (1+x)}{x^{p}}+\int_{1}^{\infty} \frac{\ln (1+x)}{x^{p}} .
$$

- For the first integral, the Taylor series for

$$
\ln (1+x)=x-\frac{x^{2}}{2}+\cdots
$$

indicates that $\ln (1+x) / x^{p}$ behaves like $x^{-(p-1)}$ near zero, and so should be integrable near zero, if $p-1<1$ or $p<2$. To check this rigorously, we need the following.
Claim. There exists a $\delta>0$ such that for all $x \in(0, \delta)$,

$$
\frac{x}{2}<\ln (1+x)<\frac{3 x}{2} .
$$

Proof. By L'Hospital's rule

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1
$$

and so there exists $\delta>0$ such that for all $x \in(0, \delta)$ such that

$$
\left|\frac{\ln (1+x)}{x}-1\right|<\frac{1}{2}
$$

or equivalently,

$$
\frac{1}{2}<\frac{\ln (1+x)}{x}<\frac{3}{2}
$$

and the claim follows.
Having proved the claim, it follows by the comparison theorem, that $\int_{0}^{1} \frac{\ln (1+x)}{x^{p}}$ converges if and only if $\int_{0}^{1} x^{1-p}$ converges, which happens if and only if $p<2$.

- To analyze the integral at infinity, we again use the basic fact that given any $\alpha>0$, there exists $M=M(\alpha)$ such that $\ln (1+x)<x^{\alpha}$ for all $x>M$. If $p>1$, let $\alpha>0$ such that $p-\alpha>1$. Then since for all $x>M(\alpha)$,

$$
\frac{\ln (1+x)}{x^{p}} \leq x^{\alpha-p}
$$

and $\int_{1}^{\infty} x^{\alpha-p}$ converges, it follows by the comparison principle that $\int_{1}^{\infty} \frac{\ln (1+x)}{x^{p}}$ converges. On the other hand, if $p \leq 1$, then

$$
\frac{\ln (1+x)}{x} \geq \frac{1}{x^{p}}
$$

Since $\int_{1}^{\infty} x^{-p}$ diverges, it follows that the given integral also diverges.
Combining the two cases above, we see that the integral is convergent if and only if $1<p<2$.

Hint. Taylor's theorem might be useful while analyzing the integrands near $x=0$.
12. (a) Show that for $n=1,2,3, \cdots$

$$
\int_{(n-1) \pi}^{n \pi}\left|\frac{\sin x}{x}\right| d x \geq \frac{2}{n \pi}
$$

Solution: Since $1 / x>1 / n \pi$ on the given region, and that $\sin x>0$ on $[0, \pi]$ and periodic with period 2π,

$$
\begin{aligned}
\int_{(n-1) \pi}^{n \pi}\left|\frac{\sin x}{x}\right| d x & \geq \frac{1}{n \pi} \int_{(n-1) \pi}^{n \pi}|\sin x| \\
& =\frac{1}{n \pi} \int_{0}^{\pi} \sin x d x \\
& =\frac{2}{n \pi}
\end{aligned}
$$

(b) Hence show that $\int_{\pi}^{\infty}\left|\frac{\sin x}{x}\right| d x$ diverges.

Solution: For any $m \in \mathbb{N}$,

$$
\int_{\pi}^{m \pi}\left|\frac{\sin x}{x}\right| d x=\sum_{n=2}^{m} \int_{(n-1) \pi}^{n \pi}\left|\frac{\sin x}{x}\right| d x \geq \frac{2}{\pi} \sum_{n=2}^{m} \frac{1}{n} \xrightarrow{m \rightarrow \infty} \infty
$$

(c) For any $R>0$, show that

$$
\int_{\pi}^{R} \frac{\sin x}{x} d x=-\frac{1}{\pi}-\frac{\cos R}{R}+\int_{\pi}^{R} \frac{\cos x}{x^{2}} d x
$$

Solution: Integrating by parts with $u=1 / x$ and $d v=-d \cos x$,

$$
\int_{\pi}^{R} \frac{\sin x}{x} d x=\left[-\frac{\cos x}{x}\right]_{\pi}^{R}+\int_{\pi}^{R} \frac{\cos x}{x^{2}} d x=-\frac{1}{\pi}-\frac{\cos R}{R}+\int_{\pi}^{R} \frac{\cos x}{x^{2}} d x
$$

(d) Hence, show that $\int_{\pi}^{\infty} \frac{\sin x}{x} d x$ is a convergent integral.

Solution: By the above part,

$$
\lim _{R \rightarrow \infty} \int_{\pi}^{R} \frac{\sin x}{x} d x=-\frac{1}{\pi}+\lim _{R \rightarrow \infty} \int_{\pi}^{R} \frac{\cos x}{x^{2}} d x
$$

To show that the integral converges, we need to prove that the limit on the right exists and is finite. Note that

$$
\left|\frac{\cos x}{x^{2}}\right| \leq \frac{1}{x^{2}}
$$

and so since $\int_{\pi}^{\infty} x^{-2}$ converges, by the comparison test, $\int_{\pi}^{\infty}|\cos x / x|$, and hence $\int_{\pi}^{\infty} \cos x / x$ converges. This shows that the limit on the right also exists and hence the original integral is convergent.

Remark In fact, one can show that

$$
\int_{0}^{\infty} \frac{\sin x}{x}=\frac{\pi}{2}
$$

This formula is usually one of the high points of a course in complex analysis, and is a consequence of the so-called residue theorem (yes, a real integral evaluated using complex numbers!). But there are are several, real-variable proofs of this, including using doubles integrals or using differentiation under the integral sign (popularized by Feynman, as an alternative to residue calculus).

