Assignment-4

(not to be handed in)

1. Show that if f is differentiable at $x=p$, then

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p-h)}{2 h}=f^{\prime}(p)
$$

Solution: Follows from the observation that

$$
\frac{f(p+h)-f(p-h)}{2 h}=\frac{f(p+h)-f(p)}{2 h}+\frac{f(p)-f(p-h)}{2 h}
$$

and that

$$
\lim _{h \rightarrow 0} \frac{f(p)-f(p-h)}{h}=\lim _{k \rightarrow 0} \frac{f(p+k)-f(p)}{k}=f^{\prime}(p)
$$

which can be seen by setting $k=-h$.
2. Let f and g be differentiable functions on (a, b) and let $p \in(a, b)$. Define

$$
h(t)=\left\{\begin{array}{l}
f(t), t \in(a, p) \\
g(t), t \in[p, b)
\end{array}\right.
$$

Show that h is differentiable on (a, b) if and only if $f(p)=g(p)$ and $f^{\prime}(p)=g^{\prime}(p)$.

Solution:

$\bullet \Longrightarrow . h$ is continuous, and so $f(p)=h(p+)=h(p-)=g(p)$. In particular, $h(p)=f(p)=g(p)$. Now, let

$$
\varphi(t)=\frac{h(t)-h(p)}{t-p}
$$

be the difference quotient of h. Then

$$
\varphi(p+)=\lim _{t \rightarrow p^{+}} \frac{h(t)-h(p)}{t-p}=\frac{f(t)-f(p)}{t-p}=f^{\prime}(p)
$$

Similarly, $\varphi(p-)=g^{\prime}(p)$, and since h is differentiable, $\varphi(p+)=\varphi(p-)$ and so $f^{\prime}(p)=g^{\prime}(p)$.

- \Longleftarrow. Now suppose $f(p)=g(p)$ and $f^{\prime}(p)=g^{\prime}(p)$. Then in particular, $h(p)=f(p)=g(p)$. SO if $\varphi(t)$ is the difference quotient of h as above, then again, we can see that $\varphi(p+)=f^{\prime}(p)$ and $\varphi(p-)=g^{\prime}(p)$. So by the hypothesis, $\varphi(p+)=\varphi(p-)$, and the $\lim _{t \rightarrow p} \varphi(t)$ exists. Hence h is differentiable.

3. (a) Show that $|\sin \theta| \leq|\theta|$, for all $\theta \in \mathbb{R}$.

Solution: Special case of part(b) below.
(b) More generally, show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable such that $\left|g^{\prime}(t)\right| \leq M$ and $g(0)=0$, then

$$
|g(t)| \leq M|t|,
$$

for all $t \in \mathbb{R}$.
Solution: Let $t \in \mathbb{R}$ and $t \neq 0$. Then by the mean value theorem, since $g(0)=0$, there exists a c between 0 and t such that

$$
g(t)=g^{\prime}(c) t .
$$

Taking absolute value,

$$
|g(t)|=\left|g^{\prime}(c)\right||t| \leq M|t| .
$$

4. (a) Show that $\tan x>x$ for all $x \in(0, \pi / 2)$.

Solution: Consider the function $f(x)=\tan x-x$. Then

$$
f^{\prime}(x)=\sec ^{2} x-1>0,
$$

if $x \in(0, \pi / 2)$. So the function is increasing on the given region. But $f(0)=0$, and so $f(x)>0$ on $(0, \pi / 2)$.
(b) Show that

$$
\frac{2 x}{\pi}<\sin x<x
$$

for all $x \in[0, \pi / 2]$. Hint. Consider the function $\sin x / x$. Is it monotonic?
Solution: As in the hint, consider

$$
f(x)=\left\{\begin{array}{l}
\sin x / x, x \in(0, \pi / 2] \\
1, x=0
\end{array}\right.
$$

Clearly f is continuous on $[0, \pi / 2]$. For $x \in(0, \pi / 2)$,

$$
f^{\prime}(x)=\frac{x \cos x-\sin x}{x^{2}} .
$$

By part(a),

$$
\frac{\sin x}{\cos x}>x,
$$

and so (since $\cos x>0$), we see that $f^{\prime}(x)<0$ for all $x \in(0, \pi / 2)$. So the function is decreasing and

$$
f(\pi / 2) \leq f(x) \leq f(0),
$$

which gives us the required inequalities.
5. Find the following limits if they exist.
(a) $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$

Solution: Applying L'Hospital's rule twice (or actually thrice),

$$
\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}=\lim _{x \rightarrow 0} \frac{\frac{d(x-\sin x)}{d x}}{\frac{d x^{3}}{d x}}=\lim _{x \rightarrow} \frac{1-\cos x}{3 x^{2}}=\frac{1}{3} \lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{6} .
$$

(b) $\lim _{x \rightarrow 0} \frac{1-\cos 2 x-2 x^{2}}{x^{4}}$

Solution: One can again apply L'Hospital's rule two times. Instead, we use Taylor's theorem. Letting, $f(x)=\cos (2 x)$, we see that

$$
f(0)=1, f^{\prime}(0)=0, f^{\prime \prime}(0)=-4, f^{(3)}(0)=0, f^{(4)}(0)=16,
$$

and so by Taylor's theorem,

$$
\cos (2 x)=1-2 x^{2}+\frac{2}{3} x^{4}-\frac{32 \sin (2 c)}{5!} x^{5},
$$

for some c between 0 and x. But $\operatorname{since}|\sin \theta| \leq 1$, we see that

$$
\left|\frac{1-\cos 2 x-2 x^{2}}{x^{4}}+\frac{2}{3}\right| \leq \frac{32}{5!}|x| .
$$

By squeeze principle, letting $x \rightarrow 0$, we see that

$$
\lim _{x \rightarrow 0} \frac{1-\cos 2 x-2 x^{2}}{x^{4}}=-\frac{2}{3} .
$$

(c) $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}$

Solution:

- Method-1. Let $y=\left(e^{x}+x\right)^{1 / x}$. Then

$$
\ln y=\frac{\ln \left(e^{x}+x\right)}{x} .
$$

By L’Hospital,

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(e^{x}+x\right)}{x}=\lim _{x \rightarrow \infty} \frac{e^{x}+1}{e^{x}+x}=1
$$

So $\ln y \xrightarrow{x \rightarrow \infty} 1$. Exponentiating both sides, since e^{x} is continuous, $y=e^{\ln y} \rightarrow e^{1}$, and so

$$
\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}=e
$$

- Method-2. Note that

$$
\left(e^{x}+x\right)^{1 / x}=e\left(1+x e^{-x}\right)^{1 / x}=e\left(1+x e^{-x}\right)^{e^{-x} / x e^{-x}}=e\left[\left(1+x e^{-x}\right)^{1 / x e^{-x}}\right]^{e^{-x}} .
$$

Now let $y=x e^{-x}$. Then $\left(e^{x}+x\right)^{1 / x}=e\left[(1+y)^{1 / y}\right]^{-x}$ Clearly, $\lim _{x \rightarrow \infty} y=0$. Also,

$$
\lim _{y \rightarrow 0}(1+y)^{1 / y}=e .
$$

And so, by the theorem on limits of compositions,

$$
\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}=e\left[\lim _{y \rightarrow 0}(1+y)^{1 / y}\right]^{0}=e .
$$

(d) $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$.

Solution: Again, let $y=(\cos x)^{1 / x^{2}}$. Then

$$
\ln y=\frac{\ln \cos x}{x^{2}}
$$

and so

$$
\lim _{x \rightarrow 0} \ln y=-\lim _{x \rightarrow 0} \frac{\sin x}{2 x \cos x}=-\frac{1}{2} \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos x}=-\frac{1}{2}
$$

and so $\lim _{x \rightarrow 0} y=\frac{1}{\sqrt{e}}$.
(e) $\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{e^{x}-1}$

Solution: By L'Hospital

$$
\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{e^{x}-1}=\lim _{x \rightarrow 0^{+}} \frac{\sin x}{e^{x}}=0
$$

(f) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$

Solution: Again by L'Hospital's

$$
\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=\lim _{x \rightarrow 0} \frac{x-\sin x}{x \sin x}=\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x+x \cos x}=\lim _{x \rightarrow 0} \frac{\sin x}{2 \cos x+x \sin x}=0
$$

6. Consider the functions

$$
f(x)=x+\cos x \sin x \text { and } g(x)=e^{\sin x}(x+\cos x \sin x)
$$

(a) Show that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$.

Solution: Note that

$$
x-1 \leq f(x), e^{-1}(x-1) \leq g(x)
$$

for all $x \geq 0$. Then by the squeeze princinple we see that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$..
(b) Show that if $\cos x \neq 0$ and $x>3$, then

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}
$$

Solution: Simple computation using chain and product rules.
(c) Show that

$$
\lim _{x \rightarrow \infty} \frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}=0
$$

and yet, the limit $\lim _{x \rightarrow \frac{f(x)}{g(x)}}$ does not exist.

Solution: Clearly,

$$
\left|2 e^{-\sin x} \cos x\right| \leq 2 e
$$

for all $x \in \mathbb{R}$. Next,

$$
2 \cos x+f(x) \geq f(x)-2 \geq x-3
$$

for all $x>3$. And so for $x>3$,

$$
\left|\frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}\right| \leq \frac{2 e}{x-3} \rightarrow 0
$$

as $x \rightarrow \infty$. This proves that

$$
\lim _{x \rightarrow \infty} \frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}=0
$$

On the other hand,

$$
\frac{f(x)}{g(x)}=e^{-\sin x}
$$

which clearly does not have a limit as $x \rightarrow \infty$.
(d) Explain why this does not contradict L'Hospital's rule.

Solution: One of the assumptions when using L'Hospital's rule when computing $\lim _{x \rightarrow s} f(x) / g(x)$ is that $f^{\prime}(x) / g^{\prime}(x)$ is well defined for all points near s, which means in particular that $g^{\prime}(x) \neq 0$ for all x close enough to s. But in the example above,

$$
g^{\prime}(x)=e^{\sin x} \cos x[2 \cos x+f(x)]
$$

Consider the sequence $x_{n}=n \pi / 2$. Then $x_{n} \xrightarrow{n \rightarrow \infty} \infty$ and $g^{\prime}\left(x_{n}\right)=0$ for all n, and so L'Hospital's rule cannot be applied.
7. (a) Show that $e^{x} \geq 1+x$ for all $x \geq 0$ (In the earlier version this was $x \in \mathbb{R}$, which is clearly incorrect).

Solution: Let $f(x)=e^{x}-1-x$, Then $f^{\prime}(x)=e^{x}-1 \geq 0$ for all $x \in \mathbb{R}$. So f is increasing on \mathbb{R}. Since $f(0)=0$, this shows that $x \geq 0 \Longrightarrow f(x) \geq 0$.
(b) Show that there exists a constant $M>0$ such that

$$
\left|\frac{e^{x}-1-x}{x^{2}}-\frac{1}{2}\right| \leq M|x|
$$

for all $x \in[-1,1] \backslash\{0\}$. Hint. Taylor's thoerem.
Solution: By Taylor's theorem, for any $x \in[-1,1]$ and $x \neq 0$, there exists c between x and 0 such that

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{e^{c}}{3!} x^{3},
$$

and so

$$
\left|\frac{e^{x}-1-x}{x^{2}}-\frac{1}{2}\right| \leq M|x|,
$$

where we can take $M=e / 6$.
(c) Compute

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}} .
$$

Solution: By squeeze theorem, letting $x \rightarrow 0$ in the above estimate, clearly,

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}=\frac{1}{2} .
$$

8. Show the following Bernoulli's inequalities.
(a) If $r \in[0,1]$ and $x \geq-1$, show that

$$
(1+x)^{r} \leq 1+r x .
$$

Solution: Consider $f(x)=1+r x-(1+x)^{r}$. Then

$$
f^{\prime}(x)=r\left[1-\frac{1}{(1+x)^{1-r}}\right] .
$$

Note that $1-r \geq 0$. So on $x \geq 0$, clearly $f^{\prime}(x) \geq 0$ and the function is increasing. On the other hand when $x \in[-1,0]$ clearly $f^{\prime}(x) \leq 0$. This shows that the function decreases on $[-1,0]$ and increases on $[0, \infty)$, and so the 0 is a minima. Since $f(0)=0$, this shows that for all $x \in[-1, \infty), f(x) \geq 0$.
(b) If $r \in(-\infty, 0) \cup(1, \infty)$, and $x \geq-1$, show that

$$
(1+x)^{r} \geq 1+r x .
$$

Solution: This time consider the function $f(x)=(1+x)^{r}-r x-1$. Then

$$
f^{\prime}(x)=r\left[(1+x)^{r-1}-1\right] .
$$

Now there are two cases.

- $r \in(-\infty, 0)$. In this case if $x \in[-1,0],(1+x)^{r-1}-1 \geq 0$ and if $x>0,(1+x)^{r-1}-1 \leq 0$. But since $r<0$ this implies that $f^{\prime}(x) \leq 0$ if $x \in[-1,0]$ and $f^{\prime}(x) \geq 0$ if $x>0$. So 0 is clearly the minimum point, and since $f(0)=0$, we have that $f(x) \geq 0$.
- $r \in[1, \infty)$. Here when $x \in[-1,0]$ we see that $(1+x)^{r-1}-1 \leq 0$ and if $x>0$, $(1+x)^{r-1}-1 \geq 0$. But now since $r>0$, we again have that $f^{\prime}(x) \leq 0$ if $x \in[-1,0]$ and $f^{\prime}(x) \geq 0$ if $x>0$. And so once again 0 is clearly the minimum point, and since $f(0)=0$, we have that $f(x) \geq 0$.

Hint. You can either use the try to find the local max or min, or simply use the fact that if $f^{\prime} \geq 0$, then f is increasing.
9. Suppose $f \in C^{5}[-1,1]$, such that $f(0)=1$, and $f^{\prime}(0)=\cdots=f^{4}(0)=0$. If $f^{5}(0)<0$, show that there exists a $\delta>0$ such that

$$
f(x)<1,
$$

for all $x \in(0, \delta)$.

Solution: Since $f^{(5)}(x)$ is continuous, and since $f^{(5)}(0)<0$, there is a $\delta>0$ such that $f^{(5)}(x)<0$ for all $x \in(0, \delta)$. Now by Taylor's theorem, for any $x \in(0, \delta)$, there exists a $c_{x} \in(0, x)$ such that

$$
\begin{aligned}
f(x) & =f(0)+f^{\prime}(0) x+\frac{f^{(2)}(0)}{2} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\frac{f^{(4)}(0)}{4!} x^{4}+\frac{f^{(2)}\left(c_{x}\right)}{5!} x^{5} \\
& =1+\frac{f^{(2)}\left(c_{x}\right)}{5!} x^{5},
\end{aligned}
$$

since $f(0)=1$ and $f^{\prime}(0)=\cdots=f^{4}(0)=0$. Now since $c_{x} \in(0, \delta), f^{(5)}\left(c_{x}\right)<0$ and $x^{5}>0$ for $x \in(, \delta)$ we have that

$$
f(x)<1
$$

for all $x \in(0, \delta)$.
10. A function $f: E \rightarrow \mathbb{R}$ is called Lipschitz (or more precisely M-Lipschitz) if there exists an $M>0$ such that for all $x, y \in E$,

$$
|f(x)-f(y)| \leq M|x-y|
$$

(a) Show that any Lipschitz function is uniformly continuous.

Solution: Given $\varepsilon>0$, simply let $\delta=\varepsilon / M$ in the definition of uniform continuity,
(b) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function such that $\left|f^{\prime}(t)\right| \leq M$ for all $t \in(a, b)$, then f is M-Lipschitz.

Solution: Follows from the mean value theorem.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a contraction, that is an α-Lipschitz function, for some $\alpha<1$. Show that there exists a fixed point p, that is, a $p \in \mathbb{R}$ such that $f(x)=x$.

Solution: Let $x_{0} \in \mathbb{R}$ be any real number. Having chosen $x_{0}, x_{1}, \cdots, x_{n}$, let $x_{n+1}=f\left(x_{n}\right)$.
Claim-1. $\left\{x_{n}\right\}$ is a Cauchy sequence.
Proof. Without loss of generality, we can assume that $x_{1}=f\left(x_{0}\right) \neq x_{0}$, or else x_{0} would be a fixed point, and we are already done. Since f is a contraction,

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leq \alpha\left|x_{n}-x_{n-1}\right| .
$$

Applying this inductively, we see that

$$
\left|x_{n+1}-x_{n}\right| \leq \alpha^{n}\left|x_{1}-x_{0}\right|
$$

So for any $m>n$, by repeated use of triangle inequality,

$$
\begin{aligned}
\left|x_{m}-x_{n}\right| & \leq\left|x_{m}-x_{m-1}\right|+\left|x_{m-1}-x_{m-2}\right|+\cdots+\left|x_{n+1}-x_{n}\right| \\
& \leq\left(\alpha^{m-1}+\alpha^{m-2}+\cdots+\alpha^{n}\right)\left|x_{1}-x_{0}\right| \\
& \leq\left(\alpha^{n}+\alpha^{n+1}+\cdots\right)\left|x_{1}-x_{0}\right| \\
& =\frac{\alpha^{n}}{1-\alpha}\left|x_{1}-x_{0}\right|
\end{aligned}
$$

where we used the fact that since $\alpha<1$, the corresponding geometric series is convergent and has sum $1 /(1-\alpha)$. Now, given any $\varepsilon>0$, let N be such that

$$
\alpha^{N}<\frac{\varepsilon(1-\alpha)}{\left|x_{1}-x_{0}\right|}
$$

This can be done since $\lim _{N \rightarrow \infty} \alpha^{N}=0$. Then for $m>n>N$, by the above estimate,

$$
\left|x_{m}-x_{n}\right| \leq \frac{\alpha^{n}}{1-\alpha}\left|x_{1}-x_{0}\right|<\frac{\alpha^{N}}{1-\alpha}\left|x_{1}-x_{0}\right|<\varepsilon
$$

This proves that the sequence is Cauchy.
Since $\left\{x_{n}\right\}$ is Cauchy, it is also convergent, and we denote $\lim _{n \rightarrow \infty} x_{n}=p$.
Claim-2. $f(p)=p$.
Proof. Consider the equation $x_{n+1}=f\left(x_{n}\right)$. Since f is Lipshitz, it is in particular, continuous. And so taking limits on both sides,

$$
p=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} x_{n}\right)=f(p)
$$

(d) Show that the fixed point so obtained will be unique.

Solution: If there are two fixed points p and q, such that $p \neq q$, then

$$
|p-q|=|f(p)-f(q)| \leq \alpha|p-q|
$$

which is a contradiction since $\alpha<1$.
11. A function $f: E \rightarrow \mathbb{R}$ is said to be α-Hölder for $\alpha>0$, if

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha},
$$

for all $x, y \in E$ and some $M>0$.
(a) Show that any α-Hölder function is uniformly continuous.

Solution: Given $\varepsilon>0$, simply pick $\delta=(\varepsilon / M)^{1 / \alpha}$ in the definition of uniform continuity.
(b) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is α-Hölder for some $\alpha>1$, then f is differentiable, and is in fact a constant function.

Solution: Let $x \in(a, b)$ and $\varphi(t)$ be the difference quotient at x. Then

$$
|\varphi(t)|=\left|\frac{f(t)-f(x)}{t-x}\right| \leq M|t-x|^{\alpha-1} \xrightarrow{t \rightarrow x} 0
$$

since $\alpha-1>0$. Hence, not only is f differentiable on (a, b), but in fact $f^{\prime}(x)=0$ for all x. Hence f must be a constant.
12. Assume that f has a finite derivative on (a, ∞).
(a) If $f(x) \rightarrow 1$ and $f^{\prime}(x) \rightarrow c$ as $x \rightarrow \infty$, prove that $c=0$. Hint. Show, using the mean value theorem, that there is a sequence $x_{n} \in(n, n+1)$ such that $f^{\prime}\left(x_{n}\right) \rightarrow 0$.

Solution: By the mean value theorem, for each n, there exists a $x_{n} \in[n, n+1]$ such that

$$
f^{\prime}\left(x_{n}\right)=f(n+1)-f(n) .
$$

Since $\lim _{x \rightarrow \infty} f^{\prime}(x)=c$, it follows that and $\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=c$. Also

$$
\lim _{n \rightarrow \infty} f(n)=\lim _{n \rightarrow \infty} f(n+1)=1
$$

So taking limit as $n \rightarrow \infty$ we see that $c=0$.
(b) If $f^{\prime}(x) \rightarrow 1$ as $x \rightarrow \infty$, prove that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1
$$

Solution: We use L'Hospital's rule. To do that, we need to show that the numerator $f(x) \rightarrow \infty$ as $x \rightarrow \infty$.
Since $f^{\prime}(x) \rightarrow 1$ as $x \rightarrow \infty$, there exists a K such that for all $x>K, f^{\prime}(x)>1 / 2$. We will choose $N>K$. By the mean value theorem, there exists a $c \in[K, x]$ (depending possibly on $x)$ such that

$$
f(x)=f(K)+(x-K) f^{\prime}(c)>f(K)+\frac{x-K}{2}
$$

Now letting $x \rightarrow \infty$, we see that $f(x) \rightarrow \infty$. Now applying L'Hospital's rule,

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=\lim _{x \rightarrow \infty} f^{\prime}(x)=1
$$

