
Assignment-4
(not to be handed in)

1. Show that if f is differentiable at x = p, then

lim
h→0

f(p+ h)− f(p− h)

2h
= f ′(p).

Solution: Follows from the observation that

f(p+ h)− f(p− h)

2h
=
f(p+ h)− f(p)

2h
+
f(p)− f(p− h)

2h
,

and that

lim
h→0

f(p)− f(p− h)

h
= lim
k→0

f(p+ k)− f(p)

k
= f ′(p),

which can be seen by setting k = −h.

2. Let f and g be differentiable functions on (a, b) and let p ∈ (a, b). Define

h(t) =

{
f(t), t ∈ (a, p)

g(t), t ∈ [p, b).

Show that h is differentiable on (a, b) if and only if f(p) = g(p) and f ′(p) = g′(p).

Solution:

• =⇒ . h is continuous, and so f(p) = h(p+) = h(p−) = g(p). In particular, h(p) = f(p) = g(p).
Now, let

ϕ(t) =
h(t)− h(p)

t− p
,

be the difference quotient of h. Then

ϕ(p+) = lim
t→p+

h(t)− h(p)

t− p
=
f(t)− f(p)

t− p
= f ′(p).

Similarly, ϕ(p−) = g′(p), and since h is differentiable, ϕ(p+) = ϕ(p−) and so f ′(p) = g′(p).

• ⇐= . Now suppose f(p) = g(p) and f ′(p) = g′(p). Then in particular, h(p) = f(p) = g(p).
SO if ϕ(t) is the difference quotient of h as above, then again, we can see that ϕ(p+) = f ′(p)
and ϕ(p−) = g′(p). So by the hypothesis, ϕ(p+) = ϕ(p−), and the limt→p ϕ(t) exists. Hence
h is differentiable.
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3. (a) Show that | sin θ| ≤ |θ|, for all θ ∈ R.

Solution: Special case of part(b) below.

(b) More generally, show that if g : R→ R is differentiable such that |g′(t)| ≤M and g(0) = 0, then

|g(t)| ≤M |t|,

for all t ∈ R.

Solution: Let t ∈ R and t 6= 0. Then by the mean value theorem, since g(0) = 0, there exists
a c between 0 and t such that

g(t) = g′(c)t.

Taking absolute value,
|g(t)| = |g′(c)||t| ≤M |t|.

4. (a) Show that tanx > x for all x ∈ (0, π/2).

Solution: Consider the function f(x) = tanx− x. Then

f ′(x) = sec2 x− 1 > 0,

if x ∈ (0, π/2). So the function is increasing on the given region. But f(0) = 0, and so f(x) > 0
on (0, π/2).

(b) Show that
2x

π
< sinx < x

for all x ∈ [0, π/2]. Hint. Consider the function sinx/x. Is it monotonic?

Solution: As in the hint, consider

f(x) =

{
sinx/x, x ∈ (0, π/2]

1, x = 0.

Clearly f is continuous on [0, π/2]. For x ∈ (0, π/2),

f ′(x) =
x cosx− sinx

x2
.

By part(a),
sinx

cosx
> x,

and so (since cosx > 0), we see that f ′(x) < 0 for all x ∈ (0, π/2). So the function is decreasing
and

f(π/2) ≤ f(x) ≤ f(0),

which gives us the required inequalities.

5. Find the following limits if they exist.

(a) limx→0
x−sin x
x3
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Solution: Applying L’Hospital’s rule twice (or actually thrice),

lim
x→0

x− sinx

x3
= lim
x→0

d(x−sin x)
dx
dx3

dx

= lim
x→

1− cosx

3x2
=

1

3
lim
x→0

sinx

2x
=

1

6
.

(b) limx→0
1−cos 2x−2x2

x4

Solution: One can again apply L’Hospital’s rule two times. Instead, we use Taylor’s theorem.
Letting, f(x) = cos(2x), we see that

f(0) = 1, f ′(0) = 0, f ′′(0) = −4, f (3)(0) = 0, f (4)(0) = 16,

and so by Taylor’s theorem,

cos(2x) = 1− 2x2 +
2

3
x4 − 32 sin(2c)

5!
x5,

for some c between 0 and x. But since | sin θ| ≤ 1, we see that∣∣∣1− cos 2x− 2x2

x4
+

2

3

∣∣∣ ≤ 32

5!
|x|.

By squeeze principle, letting x→ 0, we see that

lim
x→0

1− cos 2x− 2x2

x4
= −2

3
.

(c) limx→∞(ex + x)1/x

Solution:

• Method-1. Let y = (ex + x)1/x. Then

ln y =
ln(ex + x)

x
.

By L’Hospital,

lim
x→∞

ln(ex + x)

x
= lim
x→∞

ex + 1

ex + x
= 1.

So ln y
x→∞−−−−→ 1. Exponentiating both sides, since ex is continuous, y = eln y → e1, and so

lim
x→∞

(ex + x)1/x = e.

• Method-2. Note that

(ex + x)1/x = e(1 + xe−x)1/x = e(1 + xe−x)e
−x/xe−x

= e
[
(1 + xe−x)1/xe

−x
]e−x

.

Now let y = xe−x. Then (ex + x)1/x = e[(1 + y)1/y]e
−x

Clearly, limx→∞ y = 0. Also,

lim
y→0

(1 + y)1/y = e.

And so, by the theorem on limits of compositions,

lim
x→∞

(ex + x)1/x = e[ lim
y→0

(1 + y)1/y]0 = e.
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(d) limx→0(cosx)1/x
2

.

Solution: Again, let y = (cosx)1/x
2

. Then

ln y =
ln cosx

x2
,

and so

lim
x→0

ln y = − lim
x→0

sinx

2x cosx
= −1

2
lim
x→0

sinx

x
· lim
x→0

1

cosx
= −1

2
,

and so limx→0 y = 1√
e
.

(e) limx→0+
1−cos x
ex−1

Solution: By L’Hospital

lim
x→0+

1− cosx

ex − 1
= lim
x→0+

sinx

ex
= 0.

(f) limx→0

(
1

sin x −
1
x

)
Solution: Again by L’Hospital’s

lim
x→0

( 1

sinx
− 1

x

)
= lim
x→0

x− sinx

x sinx
= lim
x→0

1− cosx

sinx+ x cosx
= lim
x→0

sinx

2 cosx+ x sinx
= 0.

6. Consider the functions

f(x) = x+ cosx sinx and g(x) = esin x(x+ cosx sinx).

(a) Show that limx→∞ f(x) = limx→∞ g(x) =∞.

Solution: Note that
x− 1 ≤ f(x), e−1(x− 1) ≤ g(x),

for all x ≥ 0. Then by the squeeze princinple we see that limx→∞ f(x) = limx→∞ g(x) =∞..

(b) Show that if cosx 6= 0 and x > 3, then

f ′(x)

g′(x)
=

2e− sin x cosx

2 cosx+ f(x)
.

Solution: Simple computation using chain and product rules.

(c) Show that

lim
x→∞

2e− sin x cosx

2 cosx+ f(x)
= 0,

and yet, the limit limx→
f(x)
g(x) does not exist.
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Solution: Clearly,
|2e− sin x cosx| ≤ 2e,

for all x ∈ R. Next,
2 cosx+ f(x) ≥ f(x)− 2 ≥ x− 3,

for all x > 3. And so for x > 3, ∣∣∣ 2e− sin x cosx

2 cosx+ f(x)

∣∣∣ ≤ 2e

x− 3
→ 0

as x→∞. This proves that

lim
x→∞

2e− sin x cosx

2 cosx+ f(x)
= 0.

On the other hand,
f(x)

g(x)
= e− sin x

which clearly does not have a limit as x→∞.

(d) Explain why this does not contradict L’Hospital’s rule.

Solution: One of the assumptions when using L’Hospital’s rule when computing limx→s f(x)/g(x)
is that f ′(x)/g′(x) is well defined for all points near s, which means in particular that g′(x) 6= 0
for all x close enough to s. But in the example above,

g′(x) = esin x cosx[2 cosx+ f(x)].

Consider the sequence xn = nπ/2. Then xn
n→∞−−−−→ ∞ and g′(xn) = 0 for all n, and so

L’Hospital’s rule cannot be applied.

7. (a) Show that ex ≥ 1 +x for all x ≥ 0 (In the earlier version this was x ∈ R, which is clearly incorrect).

Solution: Let f(x) = ex − 1− x, Then f ′(x) = ex − 1 ≥ 0 for all x ∈ R. So f is increasing on
R. Since f(0) = 0, this shows that x ≥ 0 =⇒ f(x) ≥ 0.

(b) Show that there exists a constant M > 0 such that

|e
x − 1− x
x2

− 1

2
| ≤M |x|,

for all x ∈ [−1, 1] \ {0}. Hint. Taylor’s thoerem.

Solution: By Taylor’s theorem, for any x ∈ [−1, 1] and x 6= 0, there exists c between x and 0
such that

ex = 1 + x+
x2

2
+
ec

3!
x3,

and so

|e
x − 1− x
x2

− 1

2
| ≤M |x|,

where we can take M = e/6.
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(c) Compute

lim
x→0

ex − 1− x
x2

.

Solution: By squeeze theorem, letting x→ 0 in the above estimate, clearly,

lim
x→0

ex − 1− x
x2

=
1

2
.

8. Show the following Bernoulli’s inequalities.

(a) If r ∈ [0, 1] and x ≥ −1, show that
(1 + x)r ≤ 1 + rx.

Solution: Consider f(x) = 1 + rx− (1 + x)r. Then

f ′(x) = r
[
1− 1

(1 + x)1−r

]
.

Note that 1 − r ≥ 0. So on x ≥ 0, clearly f ′(x) ≥ 0 and the function is increasing. On the
other hand when x ∈ [−1, 0] clearly f ′(x) ≤ 0. This shows that the function decreases on
[−1, 0] and increases on [0,∞), and so the 0 is a minima. Since f(0) = 0, this shows that for
all x ∈ [−1,∞), f(x) ≥ 0.

(b) If r ∈ (−∞, 0) ∪ (1,∞), and x ≥ −1, show that

(1 + x)r ≥ 1 + rx.

Solution: This time consider the function f(x) = (1 + x)r − rx− 1. Then

f ′(x) = r
[
(1 + x)r−1 − 1

]
.

Now there are two cases.

• r ∈ (−∞, 0). In this case if x ∈ [−1, 0], (1+x)r−1−1 ≥ 0 and if x > 0, (1+x)r−1−1 ≤ 0.
But since r < 0 this implies that f ′(x) ≤ 0 if x ∈ [−1, 0] and f ′(x) ≥ 0 if x > 0. So 0 is
clearly the minimum point, and since f(0) = 0, we have that f(x) ≥ 0.

• r ∈ [1,∞). Here when x ∈ [−1, 0] we see that (1 + x)r−1 − 1 ≤ 0 and if x > 0,
(1 + x)r−1 − 1 ≥ 0. But now since r > 0, we again have that f ′(x) ≤ 0 if x ∈ [−1, 0] and
f ′(x) ≥ 0 if x > 0. And so once again 0 is clearly the minimum point, and since f(0) = 0,
we have that f(x) ≥ 0.

Hint. You can either use the try to find the local max or min, or simply use the fact that if f ′ ≥ 0,
then f is increasing.

9. Suppose f ∈ C5[−1, 1], such that f(0) = 1, and f ′(0) = · · · = f4(0) = 0. If f5(0) < 0, show that there
exists a δ > 0 such that

f(x) < 1,
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for all x ∈ (0, δ).

Solution: Since f (5)(x) is continuous, and since f (5)(0) < 0, there is a δ > 0 such that f (5)(x) < 0
for all x ∈ (0, δ). Now by Taylor’s theorem, for any x ∈ (0, δ), there exists a cx ∈ (0, x) such that

f(x) = f(0) + f ′(0)x+
f (2)(0)

2
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (2)(cx)

5!
x5

= 1 +
f (2)(cx)

5!
x5,

sincef(0) = 1 and f ′(0) = · · · = f4(0) = 0. Now since cx ∈ (0, δ), f (5)(cx) < 0 and x5 > 0 for
x ∈ (, δ) we have that

f(x) < 1

for all x ∈ (0, δ).

10. A function f : E → R is called Lipschitz (or more precisely M -Lipschitz) if there exists an M > 0 such
that for all x, y ∈ E,

|f(x)− f(y)| ≤M |x− y|.

(a) Show that any Lipschitz function is uniformly continuous.

Solution: Given ε > 0, simply let δ = ε/M in the definition of uniform continuity,

(b) Show that if f : (a, b) → R is a differentiable function such that |f ′(t)| ≤ M for all t ∈ (a, b), then
f is M -Lipschitz.

Solution: Follows from the mean value theorem.

(c) Let f : R → R be a contraction, that is an α-Lipschitz function, for some α < 1. Show that there
exists a fixed point p, that is, a p ∈ R such that f(x) = x.

Solution: Let x0 ∈ R be any real number. Having chosen x0, x1, · · · , xn, let xn+1 = f(xn).

Claim-1. {xn} is a Cauchy sequence.

Proof. Without loss of generality, we can assume that x1 = f(x0) 6= x0, or else x0 would be a
fixed point, and we are already done. Since f is a contraction,

|xn+1 − xn| = |f(xn)− f(xn−1)| ≤ α|xn − xn−1|.

Applying this inductively, we see that

|xn+1 − xn| ≤ αn|x1 − x0|.

So for any m > n, by repeated use of triangle inequality,

|xm − xn| ≤ |xm − xm−1|+ |xm−1 − xm−2|+ · · ·+ |xn+1 − xn|
≤ (αm−1 + αm−2 + · · ·+ αn)|x1 − x0|
≤ (αn + αn+1 + · · · )|x1 − x0|

=
αn

1− α
|x1 − x0|,

7



where we used the fact that since α < 1, the corresponding geometric series is convergent and
has sum 1/(1− α). Now, given any ε > 0, let N be such that

αN <
ε(1− α)

|x1 − x0|
.

This can be done since limN→∞ αN = 0. Then for m > n > N , by the above estimate,

|xm − xn| ≤
αn

1− α
|x1 − x0| <

αN

1− α
|x1 − x0| < ε.

This proves that the sequence is Cauchy.

Since {xn} is Cauchy, it is also convergent, and we denote limn→∞ xn = p.

Claim-2. f(p) = p.

Proof. Consider the equation xn+1 = f(xn). Since f is Lipshitz, it is in particular, continuous.
And so taking limits on both sides,

p = lim
n→∞

xn+1 = lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(p).

(d) Show that the fixed point so obtained will be unique.

Solution: If there are two fixed points p and q, such that p 6= q, then

|p− q| = |f(p)− f(q)| ≤ α|p− q|,

which is a contradiction since α < 1.

11. A function f : E → R is said to be α-Hölder for α > 0, if

|f(x)− f(y)| ≤M |x− y|α,

for all x, y ∈ E and some M > 0.

(a) Show that any α-Hölder function is uniformly continuous.

Solution: Given ε > 0, simply pick δ = (ε/M)1/α in the definition of uniform continuity.

(b) Show that if f : (a, b) → R is α-Hölder for some α > 1, then f is differentiable, and is in fact a
constant function.

Solution: Let x ∈ (a, b) and ϕ(t) be the difference quotient at x. Then

|ϕ(t)| =
∣∣∣f(t)− f(x)

t− x

∣∣∣ ≤M |t− x|α−1 t→x−−−→ 0.

since α − 1 > 0. Hence, not only is f differentiable on (a, b), but in fact f ′(x) = 0 for all x.
Hence f must be a constant.

12. Assume that f has a finite derivative on (a,∞).

(a) If f(x) → 1 and f ′(x) → c as x → ∞, prove that c = 0. Hint. Show, using the mean value
theorem, that there is a sequence xn ∈ (n, n+ 1) such that f ′(xn)→ 0.
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Solution: By the mean value theorem, for each n, there exists a xn ∈ [n, n+ 1] such that

f ′(xn) = f(n+ 1)− f(n).

Since limx→∞ f ′(x) = c, it follows that and limn→∞ f ′(xn) = c. Also

lim
n→∞

f(n) = lim
n→∞

f(n+ 1) = 1.

So taking limit as n→∞ we see that c = 0.

(b) If f ′(x)→ 1 as x→∞, prove that

lim
x→∞

f(x)

x
= 1.

Solution: We use L’Hospital’s rule. To do that, we need to show that the numerator f(x)→∞
as x→∞.

Since f ′(x) → 1 as x → ∞, there exists a K such that for all x > K, f ′(x) > 1/2. We will
choose N > K. By the mean value theorem, there exists a c ∈ [K,x] (depending possibly on
x) such that

f(x) = f(K) + (x−K)f ′(c) > f(K) +
x−K

2
.

Now letting x→∞, we see that f(x)→∞. Now applying L’Hospital’s rule,

lim
x→∞

f(x)

x
= lim
x→∞

f ′(x) = 1.
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