Assignment-4
(not to be handed in)

1. Show that if f is differentiable at z = p, then

. flp+h)—flp—h)
lim 57 = f'(p)-

Solution: Follows from the observation that

floth)—flo—h) _fleth) —J@) )= fp-h)
2h 2h 2h ’

and that Fo) = Fo—h) . Fp+k) — ()
f FO= L = g FEEEEE

which can be seen by setting k = —h.

2. Let f and g be differentiable functions on (a,b) and let p € (a,b). Define

Show that & is differentiable on (a,b) if and only if f(p) = g(p) and f'(p) = ¢'(p).

Solution:

e —> . hiscontinuous, and so f(p) = h(p+) = h(p—) = g(p). In particular, h(p) = f(p) = g(p).

Now, let
h(t) —h
o) = MO0,
be the difference quotient of h. Then

t—pt t—op t—op
Similarly, ¢(p—) = ¢’(p), and since h is differentiable, p(p+) = ¢(p—) and so f'(p) = ¢'(p).

e <. Now suppose f(p) = g(p) and f'(p) = ¢’(p). Then in particular, h(p) = f(p) = g(p).
SO if ¢(t) is the difference quotient of h as above, then again, we can see that ¢(p+) = f'(p)
and p(p—) = ¢'(p). So by the hypothesis, p(p+) = ¢(p—), and the lim;_,, p(t) exists. Hence
h is differentiable.




3.

(a) Show that |sinf| < |6], for all § € R.

Solution: Special case of part(b) below.

(b) More generally, show that if g : R — R is differentiable such that |¢'(t)] < M and ¢(0) = 0, then
lg(t)| < M,

for all t € R.

Solution: Let t € R and ¢ # 0. Then by the mean value theorem, since ¢g(0) = 0, there exists
a ¢ between 0 and ¢ such that

Taking absolute value,

(a) Show that tanz > x for all x € (0,7/2).

Solution: Consider the function f(z) = tanz — z. Then
f(z) =sec’z —1 >0,

if z € (0,7/2). So the function is increasing on the given region. But f(0) = 0, and so f(z) > 0
on (0,7/2).

(b) Show that

2x .
— <sinzx <z
T

for all € [0,7/2]. Hint. Consider the function sinz/x. Is it monotonic?

Solution: As in the hint, consider

_Jsinz/z,x € (0,7/2]
f(x)_{l, z=0.

Clearly f is continuous on [0, 7/2]. For = € (0,7/2),

xrcosx —sinx

M) —
f (LC) - 1‘2
By part(a),
sinx
>,
cos
and so (since cosz > 0), we see that f'(z) < 0 for all z € (0,7/2). So the function is decreasing
and

f(m/2) < fx) < F(0),

which gives us the required inequalities.

5. Find the following limits if they exist.

(a) limy o 2=Sinz



Solution: Applying L’Hospital’s rule twice (or actually thrice),

d(x—sinx)

. x—sinx . Tx . 1—-cosx 1. sinx 1
lim ———— = lim —%— =lim——— = - lim = —.
z—0 3 z—0 ddi z—  3x2 3250 2z 6
T

1—cos 22 —2z>

limg 0 24

Solution: One can again apply L’Hospital’s rule two times. Instead, we use Taylor’s theorem.
Letting, f(x) = cos(2z), we see that

FO) =1, f(0)=0, f(0) = —4, f&(0) =0, /9 (0) =16,
and so by Taylor’s theorem,

2 32sin(2
cos(2r) = 1 — 2% + §x4 _ yma

for some ¢ between 0 and x. But since |sinf| < 1, we see that

1—cos2x—2x2+2 <32‘ |
_— + = —|x|.
4 31— 5!

By squeeze principle, letting x — 0, we see that

. 1—cos2x — 222 2
lim — =3
2—0 T 3
limg o0 (€ 4 )1/
Solution:
e Method-1. Let y = (¢ + 2)/*. Then
Iny = Infe” +7) x).
T
By L’Hospital,
In(e® 1
lim M: lim et =1
T—00 xT rz—o0 €T + x

So lny 270, Exponentiating both sides, since e® is continuous, y = e™¥ — e!, and so
lim (e +2)'/* = e.
T—r0o0

e Method-2. Note that

—x
] €

(ez —|—.r)1/z = 6(1 + xe*m)l/fﬁ — 6(1 + xefz)e’m/xe’“ — e[(l + xefx)l/ze’
Now let y = ze~". Then (* +2)"/* = e[(1+ )7} " Clearly, lim, o0y = 0. Also,
lim (14 )Y =e.
y—0

And so, by the theorem on limits of compositions,

lim (e” 4 2)Y/* = e[li_r%(l + )70 =e.
y

Tr—r00




(d) limg_o(cosz)/=".

Solution: Again, let y = (cos x)l/w2. Then
In cos x
Iny = o
x
and so . )
. . sinx 1. . sinz . 1 1
lim lny = — lim = —— lim - lim =——,
0 z—0 2z cos T 2z—0 x =-0cCOoST 2
and so lim, gy = ﬁ
(e) limy,_,o+ 1e_ffsl""
Solution: By L’Hospital
1 —cosz . sinzx
m —— — = lim =0.
z—0t e —1 z—0t e¥
. 1 1
(f) limg 0 (sin:v - E)
Solution: Again by L’Hospital’s
. 1 1 . x—sinx . 1——coszx . sin
hm(_ ——):hm.i:hm.i:hm—.:
z—0\sinz =z z—0 xsinx z—=0sinx + rcosx =—02cosT + xsinx

6. Consider the functions

f(x) =z + cosxsinz and g(z) = ™" (z + cosrsin ).

(a) Show that lim, o0 f(2) = lim, 00 g() = 0.

Solution: Note that
z—1< f(z), e Nz —1) < g(a),

for all z > 0. Then by the squeeze princinple we see that lim, o f(z) = lim, ~ g(z) = co..

(b) Show that if cosx # 0 and = > 3, then

fl(x)  2e S Tcosx
g (r)  2cosz+ f(z)

Solution: Simple computation using chain and product rules.

(¢) Show that
. 2e~SINT oog 1

lim ——— =
z—oo 2cosx + f(x)

)

and yet, the limit lim,_, % does not exist.



7.

Solution: Clearly, )
|2€_ sin x COSJJ| S 26,

for all x € R. Next,
2cosz + f(x) > f(x) —2>x — 3,

for all x > 3. And so for x > 3,

2e” 5T cos 2e
<
2cosz+ f(x)l — z—3

—0

as ¢ — oo. This proves that
2e "M% cosx

lim ——— =
T30 2C0S T + f(x)
On the other hand,

f(LII) _ e—sinx

9(x)
which clearly does not have a limit as x — oc.

Explain why this does not contradict L’Hospital’s rule.

Solution: One of the assumptions when using L’Hospital’s rule when computing lim,_, f(x)/g(z
is that f'(z)/g'(x) is well defined for all points near s, which means in particular that ¢’'(z) # 0
for all x close enough to s. But in the example above,

g (z) = ™% cos x[2 cos x + f(x)].

Consider the sequence x, = nw/2. Then x, —— oo and ¢'(x,) = 0 for all n, and so
L’Hospital’s rule cannot be applied.

(a) Show that e* > 1+« for all x > 0 (In the earlier version this was € R, which is clearly incorrect).

Solution: Let f(z) =e* —1—x, Then f'(z) =e” —1 >0 for all z € R. So f is increasing on
R. Since f(0) = 0, this shows that z >0 = f(x) > 0.

(b) Show that there exists a constant M > 0 such that

er —1—=x

I~

1
—Z|l<M

for all x € [-1,1] \ {0}. Hint. Taylor’s thoerem.

Solution: By Taylor’s theorem, for any x € [—1,1] and x # 0, there exists ¢ between x and 0

such that
2 c

x __ £ i 3
e —1—|—x+2+3!x,
and so : 1
e —1—=x
| ) —§|§M|$|,

where we can take M = ¢/6.




(¢) Compute

Solution: By squeeze theorem, letting x — 0 in the above estimate, clearly,

et —-1—-z 1
llm 72 - .
z—0 x 2

8. Show the following Bernoulli’s inequalities.

(a) If r € [0,1] and = > —1, show that
14+2)" <1+rz.

Solution: Consider f(z) =1+ rz — (14 2)". Then

1
!/
)
f (LU) r (1+’JJ)17T
Note that 1 —r > 0. So on x > 0, clearly f’(z) > 0 and the function is increasing. On the
other hand when x € [—1,0] clearly f'(x) < 0. This shows that the function decreases on
[—1,0] and increases on [0,00), and so the 0 is a minima. Since f(0) = 0, this shows that for
all z € [-1,00), f(z) > 0.

(b) If r € (—00,0) U (1,00), and x > —1, show that

1+z)" >1+ra.

Solution: This time consider the function f(z) = (1 + )" — r@ — 1. Then
f@) =r[( 42t - 1),

Now there are two cases.

e r € (—00,0). In this case if z € [-1,0], (1+z)" 1 =1 >0andifz >0, (1+2)" "t -1 <0.
But since r < 0 this implies that f'(z) < 0if z € [-1,0] and f'(z) > 0if 2 > 0. So 0 is
clearly the minimum point, and since f(0) = 0, we have that f(x) > 0.

r € [1,00). Here when z € [~1,0] we see that (1 +2)""! —1 < 0 and if z > 0,
(1+2)"~t —1 > 0. But now since r > 0, we again have that f/(x) <0 if x € [-1,0] and
f'(z) > 0if 2 > 0. And so once again 0 is clearly the minimum point, and since f(0) = 0,
we have that f(z) > 0.

Hint. You can either use the try to find the local max or min, or simply use the fact that if f/ > 0,
then f is increasing.

9. Suppose f € C°[—1,1], such that f(0) = 1, and f/(0) = --- = f4(0) = 0. If °(0) < 0, show that there
exists a § > 0 such that

fx) <1,



for all z € (0,0).

Solution: Since f(®) (x) is continuous, and since f(®)(0) < 0, there is a § > 0 such that f®)(z) < 0
for all z € (0,6). Now by Taylor’s theorem, for any z € (0,4), there exists a ¢, € (0, z) such that

f(4)(0) ot + f(Q)(C:r:) 25

(2) (3)
(2)
= 1 —+ f 25(!CI)I5,
sincef(0) = 1 and f/(0) = --- = f4(0) = 0. Now since ¢, € (0,6), f®(c;) < 0 and 2° > 0 for
x € (,0) we have that
flx) <1

for all z € (0,0).

10. A function f: F — R is called Lipschitz (or more precisely M-Lipschitz) if there exists an M > 0 such

that for all z,y € F,
|f(x) = f(y)l < M|z —y|.

(a) Show that any Lipschitz function is uniformly continuous.

Solution: Given e > 0, simply let § = ¢/M in the definition of uniform continuity,

(b) Show that if f : (a,b) — R is a differentiable function such that |f’(¢)| < M for all ¢ € (a,b), then
f is M-Lipschitz.

Solution: Follows from the mean value theorem.

(¢) Let f: R — R be a contraction, that is an a-Lipschitz function, for some o < 1. Show that there
exists a fized point p, that is, a p € R such that f(z) = z.

Solution: Let 2y € R be any real number. Having chosen zg, 1, -+, Zn, let z,11 = f(xy).
Claim-1. {z,} is a Cauchy sequence.

Proof. Without loss of generality, we can assume that x; = f(xg) # xo, or else o would be a
fixed point, and we are already done. Since f is a contraction,

[Tng1 = | = [f(@n) = flzn1)| < afen —2n 1],
Applying this inductively, we see that
|Tnt1 — Tn] < @”|xy — 20].
So for any m > n, by repeated use of triangle inequality,
[Zm — @n| < T — Tm—1] + |Tm-1 — Tm—2| + - + [Tpy1 — @n

< (Ozm_l +am—2+...+an)|.’£1 _370|

§ (an+an+1+”.)|x17x0|
a”
= 1_a‘I1—I0|,




where we used the fact that since o < 1, the corresponding geometric series is convergent and
has sum 1/(1 — «). Now, given any € > 0, let N be such that

1_
oN o l-a)
|1 — 20l

This can be done since limy_,o, o’V = 0. Then for m > n > N, by the above estimate,

n

o
[T — x| < T |z1 — zo| <

T — x| < €.
—« 1—oz‘1 ol

This proves that the sequence is Cauchy. [
Since {z,} is Cauchy, it is also convergent, and we denote lim,, o Z,, = P.
Claim-2. f(p) =p.

Proof. Consider the equation 2,11 = f(2,). Since f is Lipshitz, it is in particular, continuous.
And so taking limits on both sides,

p= lm z,p = lim f(z,) = f( lim z,) = f(p).

Show that the fixed point so obtained will be unique.

Solution: If there are two fixed points p and ¢, such that p = ¢, then

lp—ql = 1f(p) — f(g)| < alp—ql,

which is a contradiction since o < 1.

11. A function f: F — R is said to be a-Hdlder for o > 0, if

|f(x) = f(y)| < M|z —y|,

for all x,y € F and some M > 0.

(a)

(b)

Show that any a-Hoélder function is uniformly continuous.

Solution: Given & > 0, simply pick § = (¢/M)Y* in the definition of uniform continuity.

Show that if f : (a,b) — R is a-Holder for some « > 1, then f is differentiable, and is in fact a
constant function.

Solution: Let x € (a,b) and ¢(t) be the difference quotient at x. Then

t) — @
o) = | LUZTD < gy gpomr 22,
since & — 1 > 0. Hence, not only is f differentiable on (a,b), but in fact f/'(z) = 0 for all x.
Hence f must be a constant.

12. Assume that f has a finite derivative on (a, c0).

(a)

If f(z) — 1 and f'(z) — ¢ as @ — oo, prove that ¢ = 0. Hint. Show, using the mean value
theorem, that there is a sequence x,, € (n,n + 1) such that f'(x,) — 0.



Solution: By the mean value theorem, for each n, there exists a x,, € [n,n + 1] such that

f'(@n) = fn+1) = f(n).
Since lim, o f'(z) = ¢, it follows that and lim, o f'(2,) = ¢. Also

lim f(n)= lgn fln+1)=1

n—0o0

So taking limit as n — oo we see that ¢ = 0.

(b) If f'(z) — 1 as * — oo, prove that

Solution: We use L’Hospital’s rule. To do that, we need to show that the numerator f(z) — oo
as T — 00.

Since f/'(z) — 1 as @ — oo, there exists a K such that for all x > K, f'(z) > 1/2. We will
choose N > K. By the mean value theorem, there exists a ¢ € [K,z] (depending possibly on

x) such that
Fla) = F(K) + (2~ K)f () > f(K) + =5

Now letting @ — oo, we see that f(z) — co. Now applying L’Hospital’s rule,

lim f@) = lim f'(z)=1.

r—o0 X r—00




