Solutions to Assignment-3

Let f : (a,b) — R be continuous such that for some p € (a,b), f(p) > 0. Show that there exists a
0 > 0 such that f(x) >0 for all x € (p—d,p+ ).

Solution: Let ¢ > 0 such that f(p) —e > 0 (for instance one can take € = f(p)/2). Since f is
continuous, there exists & > 0 such that

[z —pl <6 = |f(x) - f(p)| <e.

In particular, for all x € (p — §,p + 9), f(z) > f(p) —e > 0.

Let E C R be a subset such that there exists a sequence {x,} in E with the property that z, —
xo ¢ E. Show that there is an unbounded continuous function f : E — R.

Solution: Consider the function 1

x—x0

fz) =

Since xg ¢ FE, this function is continuous on E. On the other hand, by the hypothesis,
lim,, 0 | f(25)] = 00, and so the function is unbounded on E.

If a,b € R, show that

b —b
max{a,b} = latb)tlabl ;— la |
Solution: If a < b, then max{a,b} = b.
Show that if f1, fa, -, fn are continuous functions on a domain £ C R, then

g(x) = Inax{fl(*x)v T afn(x)}

is again a continuous function on F.

Solution: For n = 2, use part(a) to write

g(z) = (fi(z) + fa(x)) '2|‘ |f1(z) — fz(x)|

Since f1 + f2 and |f1 — f2| are continuous, it follows that g is also continuous. For n > 2 and
k=2,3,---,n,let

gr(x) = max(fi(z) -, fr(z)).
In particular g, = g. We use induction to show that gi(z) is continuous for all k = 2,---  n.
The base case k = 2 is verified, since we have already shown that go(x) is continuous. For the
inductive step, suppose g—1(z) is continuous. We note that

gr(z) = max(gx—1(x), fr(x)),




and again by the above argument for max of two continuous functions, we see that g (z) is also
continuous. By induction g,(z) = g(z) is also continuous.

(¢) Let’s explore if the infinite version of this true or not. For each n € N, define

= {12

nlz|, x| < 1/n.

Explicitly compute h(z) = sup{fi(z), fo(z), -, fu(x), - }. Is it continuous?

Solution: For any z # 0, there exists an N such that |z| > 1/n for all n > N and |z| < 1/n
for n < N, and so fy(x) =1 for all n > N and for n < N, f,(z) = n|z| < 1. On the other
hand, f,(0) = 0 for all n, and hence

R e

and is discontinuous.

3. For each of the following, decide if the function is uniformly continuous or not. In either case, give a
proof using just the definition in terms of ¢ and 4.

(a) f(z) =+va22+1on (0,1).

Solution: Note that

(@) = f) = Va2 + 1= V2 +1]

B |2 — y?|
Va2 +1+/y2 +1
|z — yllz + Y

RSNy
Now if z,y € (0,1), then |z + y| < 2, and moreover z2 4+ 1,%% + 1 > 1, and so
|f(z) = F(y)l <4z —yl.
Given € > 0, let § = ¢/4. Then

2=yl <d = [f(2) - fly)l <e

(b) g(z) = zsin(1/x) on (0,1).

Solution: Note. As was mentioned by some students in class, this problem does not seem to
have a solution without an appeal to the mean value theorem (MVT), which we of course did
not cover last week. Below is the most canonical attempt towards a solution, and you will see
the point at which I dont think one can proceed without MVT. For an independent proof of
uniform continuity, without actually using showing the dependence of § on e, simply consider
the function G : [0,1] — R,

G(x) = {g.si;(:l/g:), € (0,1]




We have shown in class that this function is continuous on [0,1]. Since [0,1] is closed and
bounded, G(x) is uniformly continuous. But then G(x) = g(z) on (0, 1), and so g(z) is also
uniformly continuous.

Failed attempt at a solution.

sin () = (5) [+ ()

an () s ()

@+ hysin (ﬁ) _ osin (%)‘ < laf

< ||

-+

For the first term, we use the fact that

sin A — sin B = 2sin (A*TB) cos (A;B),

and so

s () = ()] = 2l s () = (e )|

< 2|z

sin (%c(xh—l—h)> ‘

At this point, we really need the fact that |sind| < |6| for all 8, and I don’t know any proof
of this without using the mean value theorem. This inequality also follows from the fact that
differentiable functions with non-negative derivatives are increasing, but this latter fact itself
is a consequence of the mean value theorem!

(c) g(z) = % on [1,00).

Solution: If z,y > 1, then

_le—ylz+y)

l9(x) = 9(y)l 2E (L+i>lx—y| <2z —yl.

zy?  yx?

So given € > 0, let § = /2 in the definition of uniform continuity.

(d) g(z) = 7z on (0,1]

Solution: The function is not uniformly continuous. Consider the sequences

Then |2, — yn| = 1/2n < 1/n. On the other hand,

11
9(xn) = g(yn)| = — — — = 3n* >3,
yn n

if n > 1. This contradicts the definition of uniform continuity for € = 3.

4. (a) Let f: F — R be uniformly continuous. If {z,} is a Cauchy sequence in E, show that {f(z,)} is
also a Cauchy sequence.



Solution: Let £ > 0. Since f is uniformly continuous, there exists § > 0 such that
lz—yl<d = |f(z) - fly)l <e
Since {z,} is Cauchy, there exists N such that for all m,n > N,
[Ty — T | < 6.
Combining the two, if n,m > N, then

[f(@n) = fam)] <e.

Since this works for all € > 0, {f(z,)} is Cauchy.

(b) Show, by exhibiting an example, that the above statement is not true if f is merely assumed to be
continuous.

Solution: Let f(x) = sin(1/x). Clearly f(z) is continuous on (0, 1). But consider the sequence

2
T, = —.
nw

Since x, — 0, it is clearly Cauchy. But

0, n is even
f(wn) = {(—1)"51, n is odd,

and hence the sequence {f(z,)} is not Cauchy.

(c) Let f: (a,b) = R be continuous. Show that there exists a continuous function F' : [a,b] — R such
that F(x) = f(x) for all € (a,b) if and only if f is uniformly continuous. Hint. Given f, how
should you define F(a) and F(b)?

Solution: Consider the sequence z, = a + 1/n. For large enough n, a,, € (a,b). Since {a,}
is Cauchy, and since f is uniformly continuous, by part(a), {f(a,)} is Cauchy, and hence
converges. Let

A= lim f(ay).
n—oo
Similarly, consider b, = b — 1/n and define
B = Jim 1)
and define
A r=a
F(z) =< f(x), = € (a,b)
B, x=hb.

Clearly F' is an extension of f.

Claim. F' is continuous on [a, b].

Proof. Clearly F is continuous on (a,b). To prove continuity at a, let {z,} be a sequence in
(a,b) converging to a. We need to show that F'(z,) = f(z,) — F(a) = A. Let ¢ > 0. There
exists N7 such that for all n > Ny,

A= flan)| < 5.




The proof will be complete if we can show that for n large enough |f(z,) — f(an)| can be made
smaller than £/2. This is where we use uniform continuity. By uniform continuity of f in (a,b),
there exists a § > 0 such that

3

o—yl <6 = |f@) - J) < 5

Now, since z,, — a and a,, = a + 1/n, there exists Ny such that for all n > Ny,
|zn — an| <9,

and hence for all n > N,

[Fn) = flan)| < 5

Letting N = max(Ny, N»), using triangle inequality, we see that if n > N, then

F(en) = Al < 1 (a) = Flan)] + f(an) = A < 5 + 5 =

5. (a) Show directly from the definition of uniform continuity, that any uniformly continuous function
f : (a,b) = R is bounded.

Solution: There exists § > 0 such that for any z,y € (a,b)
[z -yl <20 = [f(z) - fY)l < L.

Let p = (b+ 1)/2, that is p is the midpoint of (a,b). The argument actually works for any
fixed point in the interval (a,b). Let m be the first natural number such that p +md > b, and
consider the intervals,

(a,p—(m—l)dL [p—(m—l)&,p—(m—2)5],--- ) [p_évp}v[p7p+5]7"' ,[p+(m—1)5,b).

Then any x belongs to at least one of the intervals. Moreover, for any x,y in the same interval,
| — y| < 26. By triangle inequality, if x > p and = € [p+ (j — 1)4, j4], then

(@) = f) < [f(@) = flo+ G =D+ [flp+ G —1)0) = flp+ (G =2+ +[f(p+9) — f(p)l

We can use a similar argument for < p. Then by triangle inequality,

[f (@) < [f@)] +m,

for all z € (a,b), and hence the function is bounded.

Note. This also follows directly from 4(c) above. Since f is uniformly continuous, there is a
continuous extension F : [a,b] — R. Since [a, b] is closed and bounded, and F' is continuous, by
extremum value theorem, F' is bounded on [a,b]. But since F(x) = f(x) for all z € (a,b) this
shows that f is bounded on (a,b).

(b) If f : R — R is uniformly continuous, show that there exist A, B € R such that | f(z)| < A|z|+ B for
all z € R. Hint. Again apply the definition of uniform continuity with € = 1. For the corresponding
0 > 0, note that any x € R can be reached from 0 be a sequence of roughly |x|/d steps. Now apply
the triangle inequality repeatedly to compare |f(z)| with | f(0)].



Solution: The solution is similar to the one above. By uniform continuity, there exists § > 0
such that
ly—z| <26 = [g(y) —g(z)| < 1.

Claim. For any real numbers a and b and non negative n such that |b — a| = nd, we have
[f(b) = f(a)] < n.

Proof. Without loss of generality, we can assume a < b and so b = a + nd. for some positive
integer n. If n = 0, there is nothing to prove, so we can assume n > (. Then

£ () = f(@) <[f(b) = f(b =)+ [f(b—08) = f(b=20)[ + -+ [f(b— (n—1)d) — f(a)]

1

IN

n

(]

[f(b—kd) = f(b— (k—1)d)]

0

IA
ST

To see the inequality in the third line, apply the above consequence of uniform continuity to
x=b—kd,y=0b— (k—1)d (so that |z —y| =0 < 20). O
Continuing with the problem, let z be an real number. Then there is an integer m (positive or
negative) such that mdé < x < (m + 1)d. In particular, since |z — md| =< 9§,

[f(z) = f(md)] < 1.

On the other hand applying the claim to a = 0, b = md and n = |m|.

[f(mé) = F(0)] < [m].

So by triangle inequality, we obtain
|f(z) = F(O)] <1+ [m].

On the other hand, since mé < x < (m+ 1)d, it is easy to see that |m| < 6~ *|z|+ 1. Using this
and triangle inequality, we see that

[f(@)] < |f(z) = F(O)| + |£(0)]
< T+[f(O)]+ |m]

<2+ 170)+ 2

< Alf(2)] + B,

with B =2+ |f(0)| and A =§1.

6. Let f:[0,1] — R be continuous with f(0) = f(1).
(a) Show that there must exist z,y € [0, 1] satisfying |z — y| = 1/2 such that f(z) = f(y).

Solution: As in the hint, consider the function g(z) = f(xz +1/2) — f(z) on [0,1/2]. Then

90 = 7(3) - 70

o(3) = )~ £(5) = ~a(0).




since f(0) = f(1). Either g(0) = 0 (and we take xy = 0), or g changes sign between 0 and 1/2.
In the latter case, by intermediate value theorem, there is an z¢ € (0,1/2) such that g(z) = 0.
In either case, if y = 29 + 1/2, then f(x) = f(y).

(b) Show that for each n € N, there exist x,, y, € [0,1] such that |z, —y,| = 1/n and f(z,) = f(yn).

Solution: Now consider
g9(x) = f(z+1/n) - f(x)
on [0, ==1]. Since f(0) = f(1), it is easy to see that

a0 +a(2) +o2) a5 0) =0,

and so all the terms cannot be of the same sign. That is, either one of g(k/n) = 0 (in which case
we let g = k/n)) or there exists j < k such that g(j/n) and g(k/n) are of opposite signs. Then
the intermediate value theorem implies that there is an z¢ € (j/n, k/n) such that g(z¢) = 0.
In either case, if y = 29 + 1/n, then f(x) = f(y).

(¢) On the other hand, if h € [0,1/2] is not of the form 1/n, show that there does not necessarily exist
x,y such that |z — y| = h with f(z) = f(y). Give an example with h = 2/5.

Solution: (Due to Rahul) Consider the function
f(z) = cos(bmz) + 2x.

Clearly f(0) = f(1) = 1. One can check easily that

f(a:+§) — fla)= %

and hence there is no z such that f(z +2/5) = f(z).

7. For each stated limit, and ¢, find the largest possible d-neighborhood that makes the definition of limits
work.

(a) il{gﬁz?, e=1

Solution: We need to find the set of all x, such that |\/z — 2| < 1, or equivalently,
—-1<vzr—-2<1,
or z € (1,9). Taking § = min(|4 — 1|,|9 — 14) = 3, we see that
v —4] <3 = |V —2| <1,

and moreover, this is the largest possible 6.

(b) lim |z| =3, ¢ =0.01.

T—T

Solution: For any =z, either |z, which would happen if and only = € [3,4), or ||| — 3| > 1.
Since we need ||z]| — 3| < 0.01, this is only possible if = € [3,4). But we also want |z — 7| < 6.




The largest possible ¢ such that = € [3,4) for all « such that |x — 7| < ¢ is given by § =
min(r — 3,4 —m) =7 — 3.

8. Compute each limit or state that it does not exist. Use any of the tools to justify your answer.

(a)

. |z — 2|
:cl—>m? z—2

Solution: Since

lv—2] |1, 2>2
r—2 -1, 2<2,

we see that ) )
lim M # lim M -1
2= r — 2 z—2- T — 2

lim ¢/z(—1)/=]

z—0

Solution: For any =z,
0 < |Va(-n)/el| < ya =5 0.

By squeeze theorem, lin%)f/f(fl)Ll”J =0.
xr—r

9. Recall that every rational number = can be written as m/n, where n > 0 and ged(m,n) = 1. When
x =0, we take m =0 and n = 1. Consider f : R — R defined by

1 m

0, x is irrational
ﬂ@Z{

n’ n '

(a) Show that for any real number « and and integer NNV, there exists a 6 > 0 such that every rational

number in the interval (o — §, a4 §), not equal to «, has denominator greater than N. Hint. First
show that the number of rational numbers in (o — 1, + 1) with denominator smaller than N is
finite. Then choose § < 1 small enough to exclude all these rationals.

Solution: We'll pick § < 1. Consider the rational numbers with denominator smaller than
N, that is the denominator (which by our convention is positive) is an integer from the set
{1,2,---, N}. Any such rational number has a bound

|m|<‘m‘<| |
—_ — mj.
N n

But the rational numbers have to be in the interval (o — d,« 4+ §) and so in particular in the
interval (o — 1, + 1). That is,

m
—lal-1< ‘—‘ <la|+1.
n
Combining with the above inequalities, we see that m has to satisfy,
—la| =1 < |m| < N(Ja] + 1).

Since m is an integer, this only leaves a finitely many choices, say mi,ms, - mg. So in all we
only have finitely many rational numbers 71, - - - 7, such that




1. If « is rational, then 7y # « for all k.
2. denominator of ry is smaller than N.
3.rp€(a—1,a+1).

Let 1
do = 5 -min(|ry —al, -+, |rL — al),
and let § = min(dp, 1) (so that 6 < 1 as promised earlier; this was needed in the argument).

The clearly 6 > 0. Also, if r is a rational in (« — d, @ + ), then the denominator of  has to be
bigger than N, and this completes the proof.

(b) For any real number «, show that tlim f(t) =0.
—a

Solution: Let € > 0, and N be the integer such that N > 1/e. By the Lemma, corresponding
to this NV, there exists a § such that for any rational number in ¢ = m/n such that 0 < [a—t| <
satisfies n > N. But then 0 < f(t) = 1/n < 1/N < e. On the other hand, for any irrational
number, ¢, f(¢f) = 0 and so for any real number ¢ # « such that |t — «a| < J, we have that
|f(t)] < €, completing the proof

(c) Prove that f is continuous at every irrational number, and has a removable discontinuity at every
rational number.

Solution: If « is an irrational number, then continuity follows from part(b) and the fact that
f(a) = 0. If « is rational, then part(b) implies that f(a+) and f(a—) exist and are zero, but
f(a) #0. So f has a removable discontinuity at «.

10. Suppose a and c are real numbers, ¢ > 0, and f : [-1,1] — R is defined by

_ famsin(lel =) (x £ 0),
J(@) = {0 (x =0).

Prove the following statements.

(a) f is continuous if and only if @ > 0.

Solution: Clearly lim,_,o f(z) exists if and only a > 0, and in that case the limit is in fact 0
and so the function is continuous.

(b) f'(0) exists if and only if a > 1.

Solution: Let ¢g(x) be the difference quotient at 0. Then
f@)—f0) _ .

_ _ —1 _: —c.
wo(x) = =z sin |z|
Now f7(0) exists if and only if lim,_,q () exists, which by the first part happens if and only

if a —1 > 0. Note also that in this case (that is, when a > 1), it follows that f/(0) = 0.

(¢) f'(x) is bounded if and only if a > 1+ c.




Solution: When x # 0, we compute f’(z). By chain and product rules

dl|

£'(@) = az® = sin (2] =) + 2 cos(la] =) (~c)la] 122

Now when = < 0, d|z|/dx = —1 and when x > 0, d|z|/dz = 1. So we have that

az® L sin (Jz|7¢) — cx® cos(|z|~¢)|z|7¢7 L, >0
f@)=140,2=0
az® Lsin (|2| 7€) + cz® cos(|z| =) |z| 771, = < 0.
Clearly the first terms above are bounded if and only if a > 1, while the second terms are

bounded if and only if a —¢—1>0or a > ¢+ 1. Since ¢ > 0, a > ¢+ 1 automatically implies
that a > 1, and so f’(z) is bounded if and only if a > ¢+ 1.

f/(z) is continuous if and only if a > 1+ c.

Solution: Again by the same reasoning as the first part, lim, o f/(z) exists (and then will
equal 0 necessarily) if and only if a > 1 and a > ¢+ 1. Again, since ¢ > 0, this is equivalent to
the single inequality a > ¢+ 1.
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