Solutions to Assignment-3

1. (a) Let $f : (a, b) \to \mathbb{R}$ be continuous such that for some $p \in (a, b)$, $f(p) > 0$. Show that there exists a $\delta > 0$ such that $f(x) > 0$ for all $x \in (p - \delta, p + \delta)$.

Solution: Let $\varepsilon > 0$ such that $f(p) - \varepsilon > 0$ (for instance one can take $\varepsilon = f(p)/2$). Since f is continuous, there exists $\delta > 0$ such that $|x - p| < \delta \implies |f(x) - f(p)| < \varepsilon$.

In particular, for all $x \in (p - \delta, p + \delta)$, $f(x) > f(p) - \varepsilon > 0$.

(b) Let $E \subset \mathbb{R}$ be a subset such that there exists a sequence $\{x_n\}$ in E with the property that $x_n \to x_0 \notin E$. Show that there is an unbounded continuous function $f : E \to \mathbb{R}$.

Solution: Consider the function $f(x) = \frac{1}{x - x_0}$.

Since $x_0 \notin E$, this function is continuous on E. On the other hand, by the hypothesis, $\lim_{n \to \infty} |f(x_n)| = \infty$, and so the function is unbounded on E.

2. (a) If $a, b \in \mathbb{R}$, show that

$$\max\{a, b\} = \frac{(a + b) + |a - b|}{2}.$$

Solution: If $a \leq b$, then $\max\{a, b\} = b$.

(b) Show that if f_1, f_2, \cdots, f_n are continuous functions on a domain $E \subset \mathbb{R}$, then

$$g(x) = \max\{f_1(x), \cdots, f_n(x)\}$$

is again a continuous function on E.

Solution: For $n = 2$, use part(a) to write

$$g(x) = \frac{(f_1(x) + f_2(x)) + |f_1(x) - f_2(x)|}{2}.$$

Since $f_1 + f_2$ and $|f_1 - f_2|$ are continuous, it follows that g is also continuous. For $n > 2$ and $k = 2, 3, \cdots, n$, let

$$g_k(x) = \max(f_1(x), \cdots, f_k(x)).$$

In particular $g_n = g$. We use induction to show that $g_k(x)$ is continuous for all $k = 2, \cdots, n$. The base case $k = 2$ is verified, since we have already shown that $g_2(x)$ is continuous. For the inductive step, suppose $g_{k-1}(x)$ is continuous. We note that

$$g_k(x) = \max(g_{k-1}(x), f_k(x)),$$
and again by the above argument for max of two continuous functions, we see that \(g_k(x) \) is also continuous. By induction \(g_n(x) = g(x) \) is also continuous.

(c) Let’s explore if the infinite version of this true or not. For each \(n \in \mathbb{N} \), define

\[
f_n(x) = \begin{cases} 1, & |x| \geq 1/n \\ n|x|, & |x| < 1/n. \end{cases}
\]

Explicitly compute \(h(x) = \sup \{f_1(x), f_2(x), \ldots, f_n(x), \ldots \} \). Is it continuous?

Solution: For any \(x \neq 0 \), there exists an \(N \) such that \(|x| > 1/n \) for all \(n > N \) and \(|x| \leq 1/n \) for \(n \leq N \), and so \(f_n(x) = 1 \) for all \(n > N \) and for \(n \leq N \), \(f_n(x) = n|x| \leq 1 \). On the other hand, \(f_n(0) = 0 \) for all \(n \), and hence

\[
h(x) = \begin{cases} 1, & x \neq 0 \\ 0, & x = 0, \end{cases}
\]

and is discontinuous.

3. For each of the following, decide if the function is uniformly continuous or not. In either case, give a proof using just the definition in terms of \(\varepsilon \) and \(\delta \).

(a) \(f(x) = \sqrt{x^2 + 1} \) on \((0, 1)\).

Solution: Note that

\[
|f(x) - f(y)| = |\sqrt{x^2 + 1} - \sqrt{y^2 + 1}|
= \frac{|x^2 - y^2|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}}
= \frac{|x - y||x + y|}{\sqrt{x^2 + 1} + \sqrt{y^2 + 1}}.
\]

Now if \(x, y \in (0, 1) \), then \(|x + y| < 2\), and moreover \(x^2 + 1, y^2 + 1 \geq 1 \), and so

\[|f(x) - f(y)| < 4|x - y|\]

Given \(\varepsilon > 0 \), let \(\delta = \varepsilon/4 \). Then

\[|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.\]

(b) \(g(x) = x \sin(1/x) \) on \((0, 1)\).

Solution: Note. As was mentioned by some students in class, this problem does not seem to have a solution without an appeal to the mean value theorem (MVT), which we of course did not cover last week. Below is the most canonical attempt towards a solution, and you will see the point at which I don’t think one can proceed without MVT. For an independent proof of uniform continuity, without actually using showing the dependence of \(\delta \) on \(\varepsilon \), simply consider the function \(G : [0, 1] \to \mathbb{R}, \)

\[
G(x) = \begin{cases} x \sin(1/x), & x \in (0, 1] \\ 0, & x = 0. \end{cases}
\]
We have shown in class that this function is continuous on $[0, 1]$. Since $[0, 1]$ is closed and bounded, $G(x)$ is uniformly continuous. But then $G(x) = g(x)$ on $(0, 1)$, and so $g(x)$ is also uniformly continuous.

Failed attempt at a solution.

$$
\left| (x+h) \sin \left(\frac{1}{x+h} \right) - x \sin \left(\frac{1}{x} \right) \right| \leq |x| \left| \sin \left(\frac{1}{x+h} \right) - \sin \left(\frac{1}{x} \right) \right| + |h| \left| \sin \left(\frac{1}{x+h} \right) \right|
$$

$$
\leq |x| \left| \sin \left(\frac{1}{x+h} \right) - \sin \left(\frac{1}{x} \right) \right| + |h|.
$$

For the first term, we use the fact that

$$
\sin A - \sin B = 2 \sin \left(\frac{A - B}{2} \right) \cos \left(\frac{A + B}{2} \right),
$$

and so

$$
|x| \left| \sin \left(\frac{1}{x+h} \right) - \sin \left(\frac{1}{x} \right) \right| = 2|x| \left| \sin \left(\frac{h}{2x(x+h)} \right) \cos \left(\frac{2x+h}{2x(x+h)} \right) \right|
$$

$$
\leq 2|x| \left| \sin \left(\frac{h}{2x(x+h)} \right) \right|.
$$

At this point, we really need the fact that $|\sin \theta| \leq |\theta|$ for all θ, and I don’t know any proof of this without using the mean value theorem. This inequality also follows from the fact that differentiable functions with non-negative derivatives are increasing, but this latter fact itself is a consequence of the mean value theorem!

(c) $g(x) = \frac{1}{x^2}$ on $[1, \infty)$.

Solution: If $x, y \geq 1$, then

$$
|g(x) - g(y)| = \frac{|x-y|(x+y)}{x^2y^2} = \left(\frac{1}{xy^2} + \frac{1}{y^2x^2} \right) |x-y| < 2|x-y|.
$$

So given $\varepsilon > 0$, let $\delta = \varepsilon/2$ in the definition of uniform continuity.

(d) $g(x) = \frac{1}{x^2}$ on $(0, 1]$

Solution: The function is not uniformly continuous. Consider the sequences

$$
x_n = \frac{1}{n}, \ y_n = \frac{1}{2n}.
$$

Then $|x_n - y_n| = 1/2n < 1/n$. On the other hand,

$$
|g(x_n) - g(y_n)| = \frac{1}{y_n^2} - \frac{1}{x_n^2} = 3n^2 > 3,
$$

if $n > 1$. This contradicts the definition of uniform continuity for $\varepsilon = 3$.

4. (a) Let $f : E \to \mathbb{R}$ be uniformly continuous. If $\{x_n\}$ is a Cauchy sequence in E, show that $\{f(x_n)\}$ is also a Cauchy sequence.
Solution: Let $\varepsilon > 0$. Since f is uniformly continuous, there exists $\delta > 0$ such that
\[|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon. \]
Since $\{x_n\}$ is Cauchy, there exists N such that for all $m, n > N$,
\[|x_n - x_m| < \delta. \]
Combining the two, if $n, m > N$, then
\[|f(x_n) - f(x_m)| < \varepsilon. \]
Since this works for all $\varepsilon > 0$, $\{f(x_n)\}$ is Cauchy.

(b) Show, by exhibiting an example, that the above statement is not true if f is merely assumed to be continuous.

Solution: Let $f(x) = \sin(1/x)$. Clearly $f(x)$ is continuous on $(0, 1)$. But consider the sequence
\[x_n = \frac{2}{n\pi}. \]
Since $x_n \to 0$, it is clearly Cauchy. But
\[f(x_n) = \begin{cases} 0, & n \text{ is even} \\ (-1)^{\frac{n-1}{2}}, & n \text{ is odd}, \end{cases} \]
and hence the sequence $\{f(x_n)\}$ is not Cauchy.

(c) Let $f : (a, b) \to \mathbb{R}$ be continuous. Show that there exists a continuous function $F : [a, b] \to \mathbb{R}$ such that $F(x) = f(x)$ for all $x \in (a, b)$ if and only if f is uniformly continuous. **Hint.** Given f, how should you define $F(a)$ and $F(b)$?

Solution: Consider the sequence $x_n = a + 1/n$. For large enough n, $a_n \in (a, b)$. Since $\{a_n\}$ is Cauchy, and since f is uniformly continuous, by part(a), $\{f(a_n)\}$ is Cauchy, and hence converges. Let
\[A = \lim_{n \to \infty} f(a_n). \]
Similarly, consider $b_n = b - 1/n$ and define
\[B = \lim_{n \to \infty} f(b_n), \]
and define
\[F(x) = \begin{cases} A, & x = a \\ f(x), & x \in (a, b) \\ B, & x = b. \end{cases} \]
Clearly F is an extension of f.

Claim. F is continuous on $[a, b]$.

Proof. Clearly F is continuous on (a, b). To prove continuity at a, let $\{x_n\}$ be a sequence in (a, b) converging to a. We need to show that $F(x_n) = f(x_n) \to F(a) = A$. Let $\varepsilon > 0$. There exists N_1 such that for all $n > N_1$,
\[|A - f(a_n)| < \frac{\varepsilon}{2}. \]
5. (a) Show directly from the definition of uniform continuity, that any uniformly continuous function $f : (a, b) \to \mathbb{R}$ is bounded.

Solution: There exists $\delta > 0$ such that for any $x, y \in (a, b)$

$$|x - y| < 2\delta \implies |f(x) - f(y)| < 1.$$

Let $p = (b + 1)/2$, that is p is the midpoint of (a, b). The argument actually works for any fixed point in the interval (a, b). Let m be the first natural number such that $p + m\delta \geq b$, and consider the intervals

$$(a, p - (m - 1)\delta], [p - (m - 1)\delta, p - (m - 2)\delta], \ldots, [p - \delta, p], [p, p + \delta], \ldots, [p + (m - 1)\delta, b).$$

Then any x belongs to at least one of the intervals. Moreover, for any x, y in the *same* interval, $|x - y| < 2\delta$. By triangle inequality, if $x > p$ and $x \in [p + (j - 1)\delta, j\delta]$, then

$$|f(x) - f(p)| \leq |f(x) - f(p + (j - 1)\delta)| + |f(p + (j - 1)\delta) - f(p + (j - 2)\delta)| + \cdots + |f(p + \delta) - f(p)| \leq 1 + \cdots + 1 = j \leq m$$

We can use a similar argument for $x < p$. Then by triangle inequality,

$$|f(x)| \leq |f(p)| + m,$$

for all $x \in (a, b)$, and hence the function is bounded.

Note. This also follows directly from 4(c) above. Since f is uniformly continuous, there is a continuous extension $F : [a, b] \to \mathbb{R}$. Since $[a, b]$ is closed and bounded, and F is continuous, by extremum value theorem, F is bounded on $[a, b]$. But since $F(x) = f(x)$ for all $x \in (a, b)$ this shows that f is bounded on (a, b).

(b) If $f : \mathbb{R} \to \mathbb{R}$ is uniformly continuous, show that there exist $A, B \in \mathbb{R}$ such that $|f(x)| \leq A|x| + B$ for all $x \in \mathbb{R}$. **Hint.** Again apply the definition of uniform continuity with $\varepsilon = 1$. For the corresponding $\delta > 0$, note that any $x \in \mathbb{R}$ can be reached from 0 be a sequence of roughly $|x|/\delta$ steps. Now apply the triangle inequality repeatedly to compare $|f(x)|$ with $|f(0)|$.
Solution: The solution is similar to the one above. By uniform continuity, there exists \(\delta > 0 \) such that

\[|y - x| < 2\delta \implies |g(y) - g(x)| < 1. \]

Claim. For any real numbers \(a \) and \(b \) and non negative \(n \) such that \(|b - a| = n\delta \), we have

\[|f(b) - f(a)| \leq n. \]

Proof. Without loss of generality, we can assume \(a < b \) and so \(b = a + n\delta \) for some positive integer \(n \). If \(n = 0 \), there is nothing to prove, so we can assume \(n > 0 \). Then

\[
|f(b) - f(a)| \leq |f(b) - f(b - \delta)| + |f(b - \delta) - f(b - 2\delta)| + \cdots + |f(b - (n - 1)\delta) - f(a)| \\
= \sum_{k=0}^{n-1} |f(b - k\delta) - f(b - (k-1)\delta)| \\
\leq n.
\]

To see the inequality in the third line, apply the above consequence of uniform continuity to \(x = b - k\delta \), \(y = b - (k-1)\delta \) (so that \(|x - y| = \delta < 2\delta \)).

Continuing with the problem, let \(x \) be an real number. Then there is an integer \(m \) (positive or negative) such that \(m\delta \leq x < (m+1)\delta \). In particular, since \(|x - m\delta| = \delta < \delta \),

\[|f(x) - f(m\delta)| < 1. \]

On the other hand applying the claim to \(a = 0 \), \(b = m\delta \) and \(n = |m| \),

\[|f(m\delta) - f(0)| < |m|. \]

So by triangle inequality, we obtain

\[|f(x) - f(0)| < 1 + |m|. \]

On the other hand, since \(m\delta \leq x < (m+1)\delta \), it is easy to see that \(|m| < \delta^{-1}|x| + 1 \). Using this and triangle inequality, we see that

\[
|f(x)| \leq |f(x) - f(0)| + |f(0)| \\
\leq 1 + |f(0)| + |m| \\
\leq 2 + |f(0)| + \frac{|x|}{\delta} \\
\leq A|f(x)| + B,
\]

with \(B = 2 + |f(0)| \) and \(A = \delta^{-1} \).

6. Let \(f : [0, 1] \to \mathbb{R} \) be continuous with \(f(0) = f(1) \).

(a) Show that there must exist \(x, y \in [0, 1] \) satisfying \(|x - y| = 1/2 \) such that \(f(x) = f(y) \).

Solution: As in the hint, consider the function \(g(x) = f(x + 1/2) - f(x) \) on \([0, 1/2] \). Then

\[
g(0) = f\left(\frac{1}{2}\right) - f(0) \\
g\left(\frac{1}{2}\right) = f(1) - f\left(\frac{1}{2}\right) = -g(0).
\]
since \(f(0) = f(1) \). Either \(g(0) = 0 \) (and we take \(x_0 = 0 \)), or \(g \) changes sign between \(0 \) and \(1/2 \).

In the latter case, by intermediate value theorem, there is an \(x_0 \in (0, 1/2) \) such that \(g(x) = 0 \). In either case, if \(y = x_0 + 1/2 \), then \(f(x) = f(y) \).

(b) Show that for each \(n \in \mathbb{N} \), there exist \(x_n, y_n \in [0, 1] \) such that \(|x_n - y_n| = 1/n \) and \(f(x_n) = f(y_n) \).

Solution: Now consider
\[
g(x) = f((x + 1)/n) - f(x)
\]
on \([0, \frac{n-1}{n}]\). Since \(f(0) = f(1) \), it is easy to see that
\[
g(0) + g\left(\frac{1}{n}\right) + g\left(\frac{2}{n}\right) + \cdots + g\left(\frac{n-1}{n}\right) = 0,
\]
and so all the terms cannot be of the same sign. That is, either one of \(g(k/n) = 0 \) (in which case we let \(x_0 = k/n \)) or there exists \(j < k \) such that \(g(j/n) \) and \(g(k/n) \) are of opposite signs. Then the intermediate value theorem implies that there is an \(x_0 \in (j/n, k/n) \) such that \(g(x_0) = 0 \). In either case, if \(y = x_0 + 1/n \), then \(f(x) = f(y) \).

(c) On the other hand, if \(h \in [0, 1/2] \) is not of the form \(1/n \), show that there does not necessarily exist \(x, y \) such that \(|x - y| = h \) with \(f(x) = f(y) \). Give an example with \(h = 2/5 \).

Solution: (Due to Rahul) Consider the function
\[
f(x) = \cos(5\pi x) + 2x.
\]
Clearly \(f(0) = f(1) = 1 \). One can check easily that
\[
f\left(\frac{x + 2}{5}\right) - f(x) = \frac{4}{5},
\]
and hence there is no \(x \) such that \(f(x + 2/5) = f(x) \).

7. For each stated limit, and \(\varepsilon \), find the largest possible \(\delta \)-neighborhood that makes the definition of limits work.

(a) \(\lim_{x \to 4} \sqrt{x} = 2, \ \varepsilon = 1 \).

Solution: We need to find the set of all \(x \), such that \(|\sqrt{x} - 2| < 1 \), or equivalently,
\[
-1 < \sqrt{x} - 2 < 1,
\]
or \(x \in (1, 9) \). Taking \(\delta = \min(|4 - 1|, |9 - 14|) = 3 \), we see that
\[
|x - 4| < 3 \implies |\sqrt{x} - 2| < 1,
\]
and moreover, this is the largest possible \(\delta \).

(b) \(\lim_{x \to \pi} [x] = 3, \ \varepsilon = 0.01 \).

Solution: For any \(x \), either \([x]\), which would happen if and only \(x \in [3, 4) \), or \([x] - 3 \geq 1 \). Since we need \([x] - 3 < 0.01 \), this is only possible if \(x \in [3, 4) \). But we also want \(|x - \pi| < \delta\).
The largest possible δ such that $x \in [3, 4)$ for all x such that $|x - \pi| < \delta$ is given by $\delta = \min(\pi - 3, 4 - \pi) = \pi - 3$.

8. Compute each limit or state that it does not exist. Use any of the tools to justify your answer.

(a) $\lim_{x \to 2} \frac{|x - 2|}{x - 2}$.

Solution: Since

$$\frac{|x - 2|}{x - 2} = \begin{cases} 1, & x > 2 \\ -1, & x < 2, \end{cases}$$

we see that $\lim_{x \to 2^+} \frac{|x - 2|}{x - 2} \neq \lim_{x \to 2^-} \frac{|x - 2|}{x - 2} = -1$.

(b) $\lim_{x \to 0} \sqrt[3]{x}(-1)^{[1/x]}$

Solution: For any x,

$$0 \leq |\sqrt[3]{x}(-1)^{[1/x]}| \leq \sqrt[3]{x} \xrightarrow{x \to 0} 0.$$

By squeeze theorem, $\lim_{x \to 0} \sqrt[3]{x}(-1)^{[1/x]} = 0$.

9. Recall that every rational number x can be written as m/n, where $n > 0$ and $gcd(m, n) = 1$. When $x = 0$, we take $m = 0$ and $n = 1$. Consider $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 0, & x \text{ is irrational} \\ \frac{1}{n}, & x = \frac{m}{n}. \end{cases}$$

(a) Show that for any real number α and an integer N, there exists a $\delta > 0$ such that every rational number in the interval $(\alpha - \delta, \alpha + \delta)$, not equal to α, has denominator greater than N. **Hint.** First show that the number of rational numbers in $(\alpha - 1, \alpha + 1)$ with denominator smaller than N is finite. Then choose $\delta < 1$ small enough to exclude all these rationals.

Solution: We’ll pick $\delta < 1$. Consider the rational numbers with denominator smaller than N, that is the denominator (which by our convention is positive) is an integer from the set $\{1, 2, \ldots, N\}$. Any such rational number has a bound

$$\frac{|m|}{N} < \frac{|m|}{n} < |m|.$$

But the rational numbers have to be in the interval $(\alpha - \delta, \alpha + \delta)$ and so in particular in the interval $(\alpha - 1, \alpha + 1)$. That is,

$$-|\alpha| - 1 < \frac{m}{n} < |\alpha| + 1.$$

Combining with the above inequalities, we see that m has to satisfy,

$$-|\alpha| - 1 < |m| < N(|\alpha| + 1).$$

Since m is an integer, this only leaves a finitely many choices, say $m_1, m_2, \ldots m_K$. So in all we only have finitely many rational numbers $r_1, \ldots r_L$ such that
1. If α is rational, then $r_k \neq \alpha$ for all k.
2. denominator of r_k is smaller than N.
3. $r_k \in (\alpha - 1, \alpha + 1)$.

Let $\delta_0 = \frac{1}{2} \cdot \min(|r_1 - \alpha|, \ldots, |r_L - \alpha|)$,
and let $\delta = \min(\delta_0, 1)$ (so that $\delta < 1$ as promised earlier; this was needed in the argument).

The clearly $\delta > 0$. Also, if r is a rational in $(\alpha - \delta, \alpha + \delta)$, then the denominator of r has to be bigger than N, and this completes the proof.

(b) For any real number α, show that $\lim_{t \to \alpha} f(t) = 0$.

Solution: Let $\epsilon > 0$, and N be the integer such that $N > 1/\epsilon$. By the Lemma, corresponding to this N, there exists a δ such that for any rational number in $t = m/n$ such that $0 < |\alpha - t| < \delta$ satisfies $n > N$. But then $0 < f(t) = 1/n < 1/N < \epsilon$. On the other hand, for any irrational number, t, $f(t) = 0$ and so for any real number $t \neq \alpha$ such that $|t - \alpha| < \delta$, we have that $|f(t)| < \epsilon$, completing the proof.

(c) Prove that f is continuous at every irrational number, and has a removable discontinuity at every rational number.

Solution: If α is an irrational number, then continuity follows from part(b) and the fact that $f(\alpha) = 0$. If α is rational, then part(b) implies that $f(\alpha^+)$ and $f(\alpha^-)$ exist and are zero, but $f(\alpha) \neq 0$. So f has a removable discontinuity at α.

10. Suppose a and c are real numbers, $c > 0$, and $f : [-1, 1] \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} x^a \sin(|x|^{-c}) & (x \neq 0), \\ 0 & (x = 0). \end{cases}$$

Prove the following statements.

(a) f is continuous if and only if $a > 0$.

Solution: Clearly $\lim_{x \to 0} f(x)$ exists if and only $a > 0$, and in that case the limit is in fact 0 and so the function is continuous.

(b) $f'(0)$ exists if and only if $a > 1$.

Solution: Let $\varphi_0(x)$ be the difference quotient at 0. Then

$$\varphi_0(x) = \frac{f(x) - f(0)}{x} = x^{a-1} \sin |x|^{-c}.$$

Now $f'(0)$ exists if and only if $\lim_{x \to 0} \varphi_0(x)$ exists, which by the first part happens if and only if $a - 1 > 0$. Note also that in this case (that is, when $a > 1$), it follows that $f'(0) = 0$.

(c) $f'(x)$ is bounded if and only if $a \geq 1 + c$.

9
Solution: When \(x \neq 0 \), we compute \(f'(x) \). By chain and product rules

\[
f'(x) = ax^{a-1} \sin (|x|^{-c}) + x^a \cos(|x|^{-c})(-c)|x|^{-c-1}\frac{d|x|}{dx}.
\]

Now when \(x < 0 \), \(d|x|/dx = -1 \) and when \(x > 0 \), \(d|x|/dx = 1 \). So we have that

\[
f'(x) =
\begin{cases}
ax^{a-1} \sin (|x|^{-c}) - cx^a \cos(|x|^{-c})|x|^{-c-1}, & x > 0 \\
0, & x = 0 \\
ax^{a-1} \sin (|x|^{-c}) + cx^a \cos(|x|^{-c})|x|^{-c-1}, & x < 0.
\end{cases}
\]

Clearly the first terms above are bounded if and only if \(a \geq 1 \), while the second terms are bounded if and only if \(a - c - 1 \geq 0 \) or \(a \geq c + 1 \). Since \(c > 0 \), \(a \geq c + 1 \) automatically implies that \(a \geq 1 \), and so \(f'(x) \) is bounded if and only if \(a \geq c + 1 \).

(d) \(f'(x) \) is continuous if and only if \(a > 1 + c \).

Solution: Again by the same reasoning as the first part, \(\lim_{x \to 0} f'(x) \) exists (and then will equal 0 necessarily) if and only if \(a > 1 \) and \(a > c + 1 \). Again, since \(c > 0 \), this is equivalent to the single inequality \(a > c + 1 \).