Solutions to Assignment-3

1. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous such that for some $p \in(a, b), f(p)>0$. Show that there exists a $\delta>0$ such that $f(x)>0$ for all $x \in(p-\delta, p+\delta)$.

Solution: Let $\varepsilon>0$ such that $f(p)-\varepsilon>0$ (for instance one can take $\varepsilon=f(p) / 2)$. Since f is continuous, there exists $\delta>0$ such that

$$
|x-p|<\delta \Longrightarrow|f(x)-f(p)|<\varepsilon
$$

In particular, for all $x \in(p-\delta, p+\delta), f(x)>f(p)-\varepsilon>0$.
(b) Let $E \subset \mathbb{R}$ be a subset such that there exists a sequence $\left\{x_{n}\right\}$ in E with the property that $x_{n} \rightarrow$ $x_{0} \notin E$. Show that there is an unbounded continuous function $f: E \rightarrow \mathbb{R}$.

Solution: Consider the function

$$
f(x)=\frac{1}{x-x_{0}}
$$

Since $x_{0} \notin E$, this function is continuous on E. On the other hand, by the hypothesis, $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right|=\infty$, and so the function is unbounded on E.
2. (a) If $a, b \in \mathbb{R}$, show that

$$
\max \{a, b\}=\frac{(a+b)+|a-b|}{2}
$$

Solution: If $a \leq b$, then $\max \{a, b\}=b$.
(b) Show that if $f_{1}, f_{2}, \cdots, f_{n}$ are continuous functions on a domain $E \subset \mathbb{R}$, then

$$
g(x)=\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}
$$

is again a continuous function on E.
Solution: For $n=2$, use part(a) to write

$$
g(x)=\frac{\left(f_{1}(x)+f_{2}(x)\right)+\left|f_{1}(x)-f_{2}(x)\right|}{2}
$$

Since $f_{1}+f_{2}$ and $\left|f_{1}-f_{2}\right|$ are continuous, it follows that g is also continuous. For $n>2$ and $k=2,3, \cdots, n$, let

$$
g_{k}(x)=\max \left(f_{1}(x) \cdots, f_{k}(x)\right)
$$

In particular $g_{n}=g$. We use induction to show that $g_{k}(x)$ is continuous for all $k=2, \cdots, n$. The base case $k=2$ is verified, since we have already shown that $g_{2}(x)$ is continuous. For the inductive step, suppose $g_{k-1}(x)$ is continuous. We note that

$$
g_{k}(x)=\max \left(g_{k-1}(x), f_{k}(x)\right)
$$

and again by the above argument for max of two continuous functions, we see that $g_{k}(x)$ is also continuous. By induction $g_{n}(x)=g(x)$ is also continuous.
(c) Let's explore if the infinite version of this true or not. For each $n \in \mathbb{N}$, define

$$
f_{n}(x)=\left\{\begin{array}{l}
1,|x| \geq 1 / n \\
n|x|,|x|<1 / n
\end{array}\right.
$$

Explicitly compute $h(x)=\sup \left\{f_{1}(x), f_{2}(x), \cdots, f_{n}(x), \cdots\right\}$. Is it continuous?
Solution: For any $x \neq 0$, there exists an N such that $|x|>1 / n$ for all $n>N$ and $|x| \leq 1 / n$ for $n \leq N$, and so $f_{n}(x)=1$ for all $n>N$ and for $n \leq N, f_{n}(x)=n|x| \leq 1$. On the other hand, $f_{n}(0)=0$ for all n, and hence

$$
h(x)=\left\{\begin{array}{l}
1, x \neq 0 \\
0, x=0
\end{array}\right.
$$

and is discontinuous.
3. For each of the following, decide if the function is uniformly continuous or not. In either case, give a proof using just the definition in terms of ε and δ.
(a) $f(x)=\sqrt{x^{2}+1}$ on $(0,1)$.

Solution: Note that

$$
\begin{aligned}
|f(x)-f(y)| & =\left|\sqrt{x^{2}+1}-\sqrt{y^{2}+1}\right| \\
& =\frac{\left|x^{2}-y^{2}\right|}{\sqrt{x^{2}+1}+\sqrt{y^{2}+1}} \\
& =\frac{|x-y||x+y|}{\sqrt{x^{2}+1}+\sqrt{y^{2}+1}}
\end{aligned}
$$

Now if $x, y \in(0,1)$, then $|x+y|<2$, and moreover $x^{2}+1, y^{2}+1 \geq 1$, and so

$$
|f(x)-f(y)|<4|x-y|
$$

Given $\varepsilon>0$, let $\delta=\varepsilon / 4$. Then

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon
$$

(b) $g(x)=x \sin (1 / x)$ on $(0,1)$.

Solution: Note. As was mentioned by some students in class, this problem does not seem to have a solution without an appeal to the mean value theorem (MVT), which we of course did not cover last week. Below is the most canonical attempt towards a solution, and you will see the point at which I dont think one can proceed without MVT. For an independent proof of uniform continuity, without actually using showing the dependence of δ on ε, simply consider the function $G:[0,1] \rightarrow \mathbb{R}$,

$$
G(x)=\left\{\begin{array}{l}
x \sin (1 / x), x \in(0,1] \\
0, x=0
\end{array}\right.
$$

We have shown in class that this function is continuous on $[0,1]$. Since $[0,1]$ is closed and bounded, $G(x)$ is uniformly continuous. But then $G(x)=g(x)$ on $(0,1)$, and so $g(x)$ is also uniformly continuous.

Failed attempt at a solution.

$$
\begin{aligned}
\left|(x+h) \sin \left(\frac{1}{x+h}\right)-x \sin \left(\frac{1}{x}\right)\right| & \leq|x|\left|\sin \left(\frac{1}{x+h}\right)-\sin \left(\frac{1}{x}\right)\right|+|h|\left|\sin \left(\frac{1}{x+h}\right)\right| \\
& \leq|x|\left|\sin \left(\frac{1}{x+h}\right)-\sin \left(\frac{1}{x}\right)\right|+|h| .
\end{aligned}
$$

For the first term, we use the fact that

$$
\sin A-\sin B=2 \sin \left(\frac{A-B}{2}\right) \cos \left(\frac{A+B}{2}\right)
$$

and so

$$
\begin{aligned}
|x|\left|\sin \left(\frac{1}{x+h}\right)-\sin \left(\frac{1}{x}\right)\right| & =2|x|\left|\sin \left(\frac{h}{2 x(x+h)}\right) \cos \left(\frac{2 x+h}{2 x(x+h)}\right)\right| \\
& \leq 2|x|\left|\sin \left(\frac{h}{2 x(x+h)}\right)\right|
\end{aligned}
$$

At this point, we really need the fact that $|\sin \theta| \leq|\theta|$ for all θ, and I don't know any proof of this without using the mean value theorem. This inequality also follows from the fact that differentiable functions with non-negative derivatives are increasing, but this latter fact itself is a consequence of the mean value theorem!
(c) $g(x)=\frac{1}{x^{2}}$ on $[1, \infty)$.

Solution: If $x, y \geq 1$, then

$$
|g(x)-g(y)|=\frac{|x-y|(x+y)}{x^{2} y^{2}}=\left(\frac{1}{x y^{2}}+\frac{1}{y x^{2}}\right)|x-y|<2|x-y|
$$

So given $\varepsilon>0$, let $\delta=\varepsilon / 2$ in the definition of uniform continuity.
(d) $g(x)=\frac{1}{x^{2}}$ on $(0,1]$

Solution: The function is not uniformly continuous. Consider the sequences

$$
x_{n}=\frac{1}{n}, y_{n}=\frac{1}{2 n}
$$

Then $\left|x_{n}-y_{n}\right|=1 / 2 n<1 / n$. On the other hand,

$$
\left|g\left(x_{n}\right)-g\left(y_{n}\right)\right|=\frac{1}{y_{n}^{2}}-\frac{1}{x_{n}^{2}}=3 n^{2}>3
$$

if $n>1$. This contradicts the definition of uniform continuity for $\varepsilon=3$.
4. (a) Let $f: E \rightarrow \mathbb{R}$ be uniformly continuous. If $\left\{x_{n}\right\}$ is a Cauchy sequence in E, show that $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence.

Solution: Let $\varepsilon>0$. Since f is uniformly continuous, there exists $\delta>0$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\varepsilon
$$

Since $\left\{x_{n}\right\}$ is Cauchy, there exists N such that for all $m, n>N$,

$$
\left|x_{n}-x_{m}\right|<\delta .
$$

Combining the two, if $n, m>N$, then

$$
\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon .
$$

Since this works for all $\varepsilon>0,\left\{f\left(x_{n}\right)\right\}$ is Cauchy.
(b) Show, by exhibiting an example, that the above statement is not true if f is merely assumed to be continuous.

Solution: Let $f(x)=\sin (1 / x)$. Clearly $f(x)$ is continuous on $(0,1)$. But consider the sequence

$$
x_{n}=\frac{2}{n \pi} .
$$

Since $x_{n} \rightarrow 0$, it is clearly Cauchy. But

$$
f\left(x_{n}\right)=\left\{\begin{array}{l}
0, n \text { is even } \\
(-1)^{\frac{n-1}{2}}, n \text { is odd }
\end{array}\right.
$$

and hence the sequence $\left\{f\left(x_{n}\right)\right\}$ is not Cauchy.
(c) Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous. Show that there exists a continuous function $F:[a, b] \rightarrow \mathbb{R}$ such that $F(x)=f(x)$ for all $x \in(a, b)$ if and only if f is uniformly continuous. Hint. Given f, how should you define $F(a)$ and $F(b)$?

Solution: Consider the sequence $x_{n}=a+1 / n$. For large enough $n, a_{n} \in(a, b)$. Since $\left\{a_{n}\right\}$ is Cauchy, and since f is uniformly continuous, by part(a), $\left\{f\left(a_{n}\right)\right\}$ is Cauchy, and hence converges. Let

$$
A=\lim _{n \rightarrow \infty} f\left(a_{n}\right)
$$

Similarly, consider $b_{n}=b-1 / n$ and define

$$
B=\lim _{n \rightarrow \infty} f\left(b_{n}\right)
$$

and define

$$
F(x)=\left\{\begin{array}{l}
A, x=a \\
f(x), x \in(a, b) \\
B, x=b
\end{array}\right.
$$

Clearly F is an extension of f.
Claim. F is continuous on $[a, b]$.
Proof. Clearly F is continuous on (a, b). To prove continuity at a, let $\left\{x_{n}\right\}$ be a sequence in (a, b) converging to a. We need to show that $F\left(x_{n}\right)=f\left(x_{n}\right) \rightarrow F(a)=A$. Let $\varepsilon>0$. There exists N_{1} such that for all $n>N_{1}$,

$$
\left|A-f\left(a_{n}\right)\right|<\frac{\varepsilon}{2}
$$

The proof will be complete if we can show that for n large enough $\left|f\left(x_{n}\right)-f\left(a_{n}\right)\right|$ can be made smaller than $\varepsilon / 2$. This is where we use uniform continuity. By uniform continuity of f in (a, b), there exists a $\delta>0$ such that

$$
|x-y|<\delta \Longrightarrow|f(x)-f(y)|<\frac{\varepsilon}{2}
$$

Now, since $x_{n} \rightarrow a$ and $a_{n}=a+1 / n$, there exists N_{2} such that for all $n>N_{2}$,

$$
\left|x_{n}-a_{n}\right|<\delta,
$$

and hence for all $n>N_{2}$,

$$
\left|f\left(x_{n}\right)-f\left(a_{n}\right)\right|<\frac{\varepsilon}{2}
$$

Letting $N=\max \left(N_{1}, N_{2}\right)$, using triangle inequality, we see that if $n>N$, then

$$
\left|f\left(x_{n}\right)-A\right| \leq\left|f\left(x_{n}\right)-f\left(a_{n}\right)\right|+\left|f\left(a_{n}\right)-A\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

5. (a) Show directly from the definition of uniform continuity, that any uniformly continuous function $f:(a, b) \rightarrow \mathbb{R}$ is bounded.

Solution: There exists $\delta>0$ such that for any $x, y \in(a, b)$

$$
|x-y|<2 \delta \Longrightarrow|f(x)-f(y)|<1
$$

Let $p=(b+1) / 2$, that is p is the midpoint of (a, b). The argument actually works for any fixed point in the interval (a, b). Let m be the first natural number such that $p+m \delta \geq b$, and consider the intervals,

$$
(a, p-(m-1) \delta],[p-(m-1) \delta, p-(m-2) \delta], \cdots,[p-\delta, p],[p, p+\delta], \cdots,[p+(m-1) \delta, b)
$$

Then any x belongs to at least one of the intervals. Moreover, for any x, y in the same interval, $|x-y|<2 \delta$. By triangle inequality, if $x>p$ and $x \in[p+(j-1) \delta, j \delta]$, then

$$
\begin{aligned}
|f(x)-f(p)| & \leq|f(x)-f(p+(j-1) \delta)|+|f(p+(j-1) \delta)-f(p+(j-2) \delta)|+\cdots+|f(p+\delta)-f(p)| \\
& \leq 1+\cdots+1=j \\
& \leq m
\end{aligned}
$$

We can use a similar argument for $x<p$. Then by triangle inequality,

$$
|f(x)| \leq|f(p)|+m
$$

for all $x \in(a, b)$, and hence the function is bounded.
Note. This also follows directly from $4(c)$ above. Since f is uniformly continuous, there is a continuous extension $F:[a, b] \rightarrow \mathbb{R}$. Since $[a, b]$ is closed and bounded, and F is continuous, by extremum value theorem, F is bounded on $[a, b]$. But since $F(x)=f(x)$ for all $x \in(a, b)$ this shows that f is bounded on (a, b).
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous, show that there exist $A, B \in \mathbb{R}$ such that $|f(x)| \leq A|x|+B$ for all $x \in \mathbb{R}$. Hint. Again apply the definition of uniform continuity with $\varepsilon=1$. For the corresponding $\delta>0$, note that any $x \in \mathbb{R}$ can be reached from 0 be a sequence of roughly $|x| / \delta$ steps. Now apply the triangle inequality repeatedly to compare $|f(x)|$ with $|f(0)|$.

Solution: The solution is similar to the one above. By uniform continuity, there exists $\delta>0$ such that

$$
|y-x|<2 \delta \Longrightarrow|g(y)-g(x)|<1
$$

Claim. For any real numbers a and b and non negative n such that $|b-a|=n \delta$, we have

$$
|f(b)-f(a)| \leq n
$$

Proof. Without loss of generality, we can assume $a<b$ and so $b=a+n \delta$. for some positive integer n. If $n=0$, there is nothing to prove, so we can assume $n>0$. Then

$$
\begin{aligned}
|f(b)-f(a)| & \leq|f(b)-f(b-\delta)|+|f(b-\delta)-f(b-2 \delta)|+\cdots+|f(b-(n-1) \delta)-f(a)| \\
& =\sum_{k=0}^{n-1}|f(b-k \delta)-f(b-(k-1) \delta)| \\
& \leq n .
\end{aligned}
$$

To see the inequality in the third line, apply the above consequence of uniform continuity to $x=b-k \delta, y=b-(k-1) \delta$ (so that $|x-y|=\delta<2 \delta$).
Continuing with the problem, let x be an real number. Then there is an integer m (positive or negative) such that $m \delta \leq x<(m+1) \delta$. In particular, since $|x-m \delta|=<\delta$,

$$
|f(x)-f(m \delta)|<1
$$

On the other hand applying the claim to $a=0, b=m \delta$ and $n=|m|$.

$$
|f(m \delta)-f(0)|<|m|
$$

So by triangle inequality, we obtain

$$
|f(x)-f(0)|<1+|m|
$$

On the other hand, since $m \delta \leq x<(m+1) \delta$, it is easy to see that $|m|<\delta^{-1}|x|+1$. Using this and triangle inequality, we see that

$$
\begin{aligned}
|f(x)| & \leq|f(x)-f(0)|+|f(0)| \\
& \leq 1+|f(0)|+|m| \\
& \leq 2+|f(0)|+\frac{|x|}{\delta} \\
& \leq A|f(x)|+B
\end{aligned}
$$

with $B=2+|f(0)|$ and $A=\delta^{-1}$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous with $f(0)=f(1)$.
(a) Show that there must exist $x, y \in[0,1]$ satisfying $|x-y|=1 / 2$ such that $f(x)=f(y)$.

Solution: As in the hint, consider the function $g(x)=f(x+1 / 2)-f(x)$ on $[0,1 / 2]$. Then

$$
\begin{aligned}
g(0) & =f\left(\frac{1}{2}\right)-f(0) \\
g\left(\frac{1}{2}\right) & =f(1)-f\left(\frac{1}{2}\right)=-g(0)
\end{aligned}
$$

since $f(0)=f(1)$. Either $g(0)=0$ (and we take $x_{0}=0$), or g changes sign between 0 and $1 / 2$. In the latter case, by intermediate value theorem, there is an $x_{0} \in(0,1 / 2)$ such that $g(x)=0$. In either case, if $y=x_{0}+1 / 2$, then $f(x)=f(y)$.
(b) Show that for each $n \in \mathbb{N}$, there exist $x_{n}, y_{n} \in[0,1]$ such that $\left|x_{n}-y_{n}\right|=1 / n$ and $f\left(x_{n}\right)=f\left(y_{n}\right)$.

Solution: Now consider

$$
g(x)=f(x+1 / n)-f(x)
$$

on $\left[0, \frac{n-1}{n}\right]$. Since $f(0)=f(1)$, it is easy to see that

$$
g(0)+g\left(\frac{1}{n}\right)+g\left(\frac{2}{n}\right)+\cdots+g\left(\frac{n-1}{n}\right)=0
$$

and so all the terms cannot be of the same sign. That is, either one of $g(k / n)=0$ (in which case we let $\left.x_{0}=k / n\right)$) or there exists $j<k$ such that $g(j / n)$ and $g(k / n)$ are of opposite signs. Then the intermediate value theorem implies that there is an $x_{0} \in(j / n, k / n)$ such that $g\left(x_{0}\right)=0$.
In either case, if $y=x_{0}+1 / n$, then $f(x)=f(y)$.
(c) On the other hand, if $h \in[0,1 / 2]$ is not of the form $1 / n$, show that there does not necessarily exist x, y such that $|x-y|=h$ with $f(x)=f(y)$. Give an example with $h=2 / 5$.

Solution: (Due to Rahul) Consider the function

$$
f(x)=\cos (5 \pi x)+2 x
$$

Clearly $f(0)=f(1)=1$. One can check easily that

$$
f\left(x+\frac{2}{5}\right)-f(x)=\frac{4}{5}
$$

and hence there is no x such that $f(x+2 / 5)=f(x)$.
7. For each stated limit, and ε, find the largest possible δ-neighborhood that makes the definition of limits work.
(a) $\lim _{x \rightarrow 4} \sqrt{x}=2, \varepsilon=1$.

Solution: We need to find the set of all x, such that $|\sqrt{x}-2|<1$, or equivalently,

$$
-1<\sqrt{x}-2<1
$$

or $x \in(1,9)$. Taking $\delta=\min (|4-1|, \mid 9-14)=3$, we see that

$$
|x-4|<3 \Longrightarrow|\sqrt{x}-2|<1
$$

and moreover, this is the largest possible δ.
(b) $\lim _{x \rightarrow \pi}\lfloor x\rfloor=3, \varepsilon=0.01$.

Solution: For any x, either $\lfloor x\rfloor$, which would happen if and only $x \in[3,4)$, or $|\lfloor x\rfloor-3| \geq 1$. Since we need $|\lfloor x\rfloor-3|<0.01$, this is only possible if $x \in[3,4)$. But we also want $|x-\pi|<\delta$.

The largest possible δ such that $x \in[3,4)$ for all x such that $|x-\pi|<\delta$ is given by $\delta=$ $\min (\pi-3,4-\pi)=\pi-3$.
8. Compute each limit or state that it does not exist. Use any of the tools to justify your answer.
(a) $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$.

Solution: Since

$$
\frac{|x-2|}{x-2}=\left\{\begin{array}{l}
1, x>2 \\
-1, x<2
\end{array}\right.
$$

we see that

$$
\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2} \neq \lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}=-1
$$

(b) $\lim _{x \rightarrow 0} \sqrt[3]{x}(-1)^{\lfloor 1 / x\rfloor}$

Solution: For any x,

$$
0 \leq\left|\sqrt[3]{x}(-1)^{\lfloor 1 / x\rfloor}\right| \leq \sqrt[3]{x} \xrightarrow{x \rightarrow 0} 0
$$

By squeeze theorem, $\lim _{x \rightarrow 0} \sqrt[3]{x}(-1)^{\lfloor 1 / x\rfloor}=0$.
9. Recall that every rational number x can be written as m / n, where $n>0$ and $\operatorname{gcd}(m, n)=1$. When $x=0$, we take $m=0$ and $n=1$. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{l}
0, x \text { is irrational } \\
\frac{1}{n}, x=\frac{m}{n}
\end{array}\right.
$$

(a) Show that for any real number α and and integer N, there exists a $\delta>0$ such that every rational number in the interval $(\alpha-\delta, \alpha+\delta)$, not equal to α, has denominator greater than N. Hint. First show that the number of rational numbers in $(\alpha-1, \alpha+1)$ with denominator smaller than N is finite. Then choose $\delta<1$ small enough to exclude all these rationals.

Solution: We'll pick $\delta<1$. Consider the rational numbers with denominator smaller than N, that is the denominator (which by our convention is positive) is an integer from the set $\{1,2, \cdots, N\}$. Any such rational number has a bound

$$
\frac{|m|}{N}<\left|\frac{m}{n}\right|<|m|
$$

But the rational numbers have to be in the interval $(\alpha-\delta, \alpha+\delta)$ and so in particular in the interval $(\alpha-1, \alpha+1)$. That is,

$$
-|\alpha|-1<\left|\frac{m}{n}\right|<|\alpha|+1
$$

Combining with the above inequalities, we see that m has to satisfy,

$$
-|\alpha|-1<|m|<N(|\alpha|+1) .
$$

Since m is an integer, this only leaves a finitely many choices, say $m_{1}, m_{2}, \cdots m_{K}$. So in all we only have finitely many rational numbers $r_{1}, \cdots r_{L}$ such that

1. If α is rational, then $r_{k} \neq \alpha$ for all k.
2. denominator of r_{k} is smaller than N.
3. $r_{k} \in(\alpha-1, \alpha+1)$.

Let

$$
\delta_{0}=\frac{1}{2} \cdot \min \left(\left|r_{1}-\alpha\right|, \cdots,\left|r_{L}-\alpha\right|\right)
$$

and let $\delta=\min \left(\delta_{0}, 1\right)$ (so that $\delta<1$ as promised earlier; this was needed in the argument). The clearly $\delta>0$. Also, if r is a rational in $(\alpha-\delta, \alpha+\delta)$, then the denominator of r has to be bigger than N, and this completes the proof.
(b) For any real number α, show that $\lim _{t \rightarrow \alpha} f(t)=0$.

Solution: Let $\epsilon>0$, and N be the integer such that $N>1 / \epsilon$. By the Lemma, corresponding to this N, there exists a δ such that for any rational number in $t=m / n$ such that $0<|\alpha-t|<\delta$ satisfies $n>N$. But then $0<f(t)=1 / n<1 / N<\epsilon$. On the other hand, for any irrational number, $t, f(t)=0$ and so for any real number $t \neq \alpha$ such that $|t-\alpha|<\delta$, we have that $|f(t)|<\epsilon$, completing the proof
(c) Prove that f is continuous at every irrational number, and has a removable discontinuity at every rational number.

Solution: If α is an irrational number, then continuity follows from $\operatorname{part}(\mathrm{b})$ and the fact that $f(\alpha)=0$. If α is rational, then part(b) implies that $f(\alpha+)$ and $f(\alpha-)$ exist and are zero, but $f(\alpha) \neq 0$. So f has a removable discontinuity at α.
10. Suppose a and c are real numbers, $c>0$, and $f:[-1,1] \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\left\{\begin{array}{l}
x^{a} \sin \left(|x|^{-c}\right)(x \neq 0) \\
0(x=0)
\end{array}\right.
$$

Prove the following statements.
(a) f is continuous if and only if $a>0$.

Solution: Clearly $\lim _{x \rightarrow 0} f(x)$ exists if and only $a>0$, and in that case the limit is in fact 0 and so the function is continuous.
(b) $f^{\prime}(0)$ exists if and only if $a>1$.

Solution: Let $\varphi_{0}(x)$ be the difference quotient at 0 . Then

$$
\varphi_{0}(x)=\frac{f(x)-f(0)}{x}=x^{a-1} \sin |x|^{-c} .
$$

Now $f^{\prime}(0)$ exists if and only if $\lim _{x \rightarrow 0} \varphi_{0}(x)$ exists, which by the first part happens if and only if $a-1>0$. Note also that in this case (that is, when $a>1$), it follows that $f^{\prime}(0)=0$.
(c) $f^{\prime}(x)$ is bounded if and only if $a \geq 1+c$.

Solution: When $x \neq 0$, we compute $f^{\prime}(x)$. By chain and product rules

$$
f^{\prime}(x)=a x^{a-1} \sin \left(|x|^{-c}\right)+x^{a} \cos \left(|x|^{-c}\right)(-c)|x|^{-c-1} \frac{d|x|}{d x} .
$$

Now when $x<0, d|x| / d x=-1$ and when $x>0, d|x| / d x=1$. So we have that

$$
f^{\prime}(x)=\left\{\begin{array}{l}
a x^{a-1} \sin \left(|x|^{-c}\right)-c x^{a} \cos \left(|x|^{-c}\right)|x|^{-c-1}, x>0 \\
0, x=0 \\
a x^{a-1} \sin \left(|x|^{-c}\right)+c x^{a} \cos \left(|x|^{-c}\right)|x|^{-c-1}, x<0
\end{array}\right.
$$

Clearly the first terms above are bounded if and only if $a \geq 1$, while the second terms are bounded if and only if $a-c-1 \geq 0$ or $a \geq c+1$. Since $c>0, a \geq c+1$ automatically implies that $a \geq 1$, and so $f^{\prime}(x)$ is bounded if and only if $a \geq c+1$.
(d) $f^{\prime}(x)$ is continuous if and only if $a>1+c$.

Solution: Again by the same reasoning as the first part, $\lim _{x \rightarrow 0} f^{\prime}(x)$ exists (and then will equal 0 necessarily) if and only if $a>1$ and $a>c+1$. Again, since $c>0$, this is equivalent to the single inequality $a>c+1$.

