1.

Solutions to Assignment-2

Only submit the questions in red.

(a)

For any two sequences {a,} and {b,} show that

lim sup(a,, + b,) < limsup a,, + limsup b,

n—oo n— oo n—roo

unless the right hand side is of the form co — cc.

Solution: Assume both the limsups are finite (the other cases are also similar). Let A =
limsup,,_,., an, B = limsup,,_,., b, and L = limsup,,_, (a, + b,). Suppose L > A + B.
Choose an ¢ > 0 such that L —e > A+ B +¢. For any N > 0 there exists an n > N such
that

anp +b, >L—¢. (0.1)

On the other hand, there exists Ny such that for all n > Ny,

9
an<A+§,

and there exists No such that for all n > Ny,

€
b, < B+ —.
< B+ 2

But then if N = max(Ny, N3), then for any n > N we have
an+b, <A+ B+e<L—c¢,

contradicting (0.1).

Find sequences {a,} and {b,} with strict inequality above.

Solution: Let a, = (—1)" and b, = (—1)"~L. Then a,,+b,, = 0 for all n, and so limsup,, , . (an+
by,) = 0 while, limsup,,_, . a, + limsup,,_, b, =1+1=2.

2. Let {a,} be a sequence of real numbers, and let

(a)

S = {z € R | 3 a sub-sequence a,, such that a,, LN x}.

Show that L = limsup a,, if and only if L = sup S.

Solution: Suppose L = limsupa,. First, we claim that L € S. To see this, note that by the
equivalent characterization of limsup, there exists n; such that

an, > L -1




Given ny, there exists ny > nq such that

1
Apy > L — 5

Having chosen ny < ng < --- < ng_1, let ng > ni_1 such that

1
Apy, >L—%

k—oc0

Claim. a,, — L.
Proof. Let € > 0. Then there exists N such that for all n > N,

a, < L+e¢.

Since ny IH—OO>, there exists a K; such that for all & > Ky, ny > N. In particular, for all
k> K,
On, < L+ €.

Let K5 such that 1/Ks < €. Then by our choice of the subsequence a,,, for all k > Ko,

1 1
G/nk>L—z>L—E>L—€.

In particular, if K = max (K7, Ks), and k& > K then
lan, — L| < ¢,

k—
and hence ay, =% L. O

This shows that L € S. In particular, L < sup S. Suppose L < supS. Let € > 0 such that
L+ e <supS. There exists an N such that for all n > N,

ap < L+¢,
and so for any x € S, © < L + . Taking sup,
supS < L + ¢,

a contradiction. Hence L = sup S.

(b) Formulate and prove the analogous statement for lim inf.

Solution: The corresponding statement would be

liminf a,, = inf S.

n—oo
One can argue as above, or alternately, use the standard trick that if b, = —a,,, then
liminf a,, = — limsup b,,.
n—00 n—00

Note. From now on, you can use the conclusions of this exercise as a theorem. So now, you have a
definition of lim sup and two other equivalent characterizations.



3.

4.

Find the lim sup and lim inf of the sequence {a,} defined recursively by

a2m—1
a1 =0, agy, = 5 o Gm+1 =3 + azm.

Justify your answers with complete proofs.

Solution: To get some intuition, we compute the first few terms of the sequence,

1 1 3 3 7 7 15
a2:07 (7,3:57 a4217 a5 = —, g = 35, a7 = 3, a8:T67 a9:T6'

Seeing a pattern, we make the claim -
Claim. liminf, ., a, = % and limsup,, ,. an = 1.

Proof. The easiest proof is to simply find a formula for the n** term. We claim that

{21;,,,1, n=2m+1
ay =

2771.71_1 o
e, = 2m.

We prove this by induction. The base cases n = 1 are seen to be true. Suppose the formula is
correct for some n =2m — 1 =2(m — 1) + 1. We then prove the formula for 2m and 2m + 1.

a2m—1 om—1 _1
2 2m

A2m =

But then again by the recursion formula,

1 27n—1 -1 om _ 1
a2m+1:§+a2m:§+ om = om

Once we have the formula, note that{as,,,1} is a increasing to 1 and {as,, } is a sequence increasin
b
21\7—1

to 1/2. Then clearly, uy = sup{ay | k > N} =1, and Iy = inf{ay | k > N} > 255z=1. Letting
N — 0o, we complete the proof of the claim.

(a) Let {a,} be a bounded sequence with the property that every convergent subsequence converges to
the same limit a. Show that the entire sequence {a,} converges and lim, o a, = a.

Solution: If not, then there exists an € > 0 and a subsequence by = a,, such that
|bk - a\ >e€

for all k. By Bozlano-Weierstrass, since {b;} is bounded, there exists a further sub-sequence
bkj which converges. But b;.cj = Gy, is also a sub-sequence of a,, and since it converges, by
the hypothesis, it must converge to a. But by our choice of {by}, |bx, —a| > ¢ for all j, a
contradiction.

(b) Now assume that {a,} is a sequence with the property that every subsequence has a further sub-
sequence that converges to the same limit a. Show that the entire sequence {a,} converges and
lim,, o an, = a.

Solution: If not, then there is an € > 0 and a sub-sequence by = a,, such that |by — a| > e.
By hypothesis, by, has a subsequence, say {b, }, that converges to a. But then

lim [by;, —a| =0,
j—o0




which contradicts the fact that by, —al > €.

5. Let {a,}52, be a sequence of real numbers satisfying

1
|an+1 - an| < §|an - an—l‘-

Show that the sequence converges. Hint. Show that the sequence is Cauchy.

Solution: Inductively, we see that for any natural number k,

1
lag1 —ap| < 27€|al —ag|.
Now if m > n then by triangle inequality

|am - an| = |am —QAm—-1+Am—1 — Am—2 + Ao — - — afn|

S |am - amfll + |am71 _am72| + -+ ‘an+1 _an|
m—1 1
< la1 — ao| Z oF
k=n
lay — ag| == 1
1 — do
§27”|a1—a0|.

Given € > 0, let N such that 2=V|a; — ag| < . Then for any m > n > N, |a,, — a,| < €, and the
sequence is Cauchy.

6. Let S = {n1,na,- -} denote the collection of those positive integers that do not have the digit 0 in their
decimal representation. (For example 7 € S but 101 ¢ S). Show that > .-, 1/n; converges. Note.
This should be a surprising result in that leaving out only a few (but of course still infinite) terms out
of the harmonic series, we end up with a series that suddenly converges.

Solution: Consider the one-digit numbers in S, namely {1,2,---,9}. Since each is bigger than one,
the sum of reciprocals is

14—1 +1<9
2 9 )

Next, consider the two-digit numbers in S. There are 81 of them, and each is bigger than 10, and
so the sum of reciprocals satisfies the estimate,

1+1+ +1+1+ +1+1<81

11 12 19 21 98 99 " 10°
In general, consider the subset Sj of numbers in S with k digits, that is numbers between 10* and
10¥*1. The number of such numbers is 9. That is because there are k digits, and each digit has 9
options. Moreover, all these numbers are bigger than 10*, and so

9k+1

1
> <o

neSk




Summing over the reciprocals of numbers with at-most m-digits,
§ § *<9§—<—§—<f = 81.
k k 9
k=1n€Sy n k=1 10 10 =0 10 101 10

In particular the partial sums of 21211 1/ny are bounded by 81 and since the terms in the series are
positive by the monotone convergence theorem, the series converges.

7. The Fibonacci numbers {f,} are defined by
fO :fl = 17 and fn+1 :fn+fn—l for n = 1a27""
For n=1,2,---, we also define 7, = fr11/fn-
(a) Find a formula for 7,41 in terms of r,. Dividing the above recurrence by f,,, we obtain

1
rn =1+ ’
Tn—1

or 1
Tn+1 =14 —.

n

(b) Show that f, > n for all n > 2.

Solution: Easy proof by induction.

(¢) Show that fr11fn-1 — f72l = (—1)n+1~

Solution: We proceed by induction. For n =1, foi1fa1—f2=fafo— fi=2-1-11=1=
(—1)*1 and so the identity is verified. Suppose the identity is verified for n — 1, that is we
have f,,fn_2 — f2_, = (=1)". Then

fos1foot — f2 = (fu + fa1)fa1 — f2

= f’Zfl + fn(fnfl - fn)
= fafn—e=—(=1)" = (=1t

(d) Hence show that if n > 2, then
1
Tn+1l — Tn| < m

Solution: Note that

fovr  fap_ 1
fn fn—l fnfn—l

by the identity. By part (b), f, > n for all n > 2 and so the proof is completed by the
elementary observation that (n — 1)% < n(n — 1).

|Tn - Tnfl‘ =

(e) Hence show that the sequence of ratios {r,} converge, and compute it’s limit. Note. This limit is
the so-called golden ratio.



Solution: For any n < m, by the triangle inequality and part(d),

1 1
m ngi .
Ir al n? + (n+1)2 + (m—1)2

Since the right hand side is the tail end of a converging series, by the Cauchy criteria, for any
€ > 0, there exists an N such that for any n,m > N, the right hand side can be made smaller
than e. This shows that {r,} is Cauchy, and hence converges. To find the actual limit, first note
that if L = lim,, o 7y, then L # 0. letting n — oo on both sides of the recurrence obtained in

part(a) we obtain

1
L=1+4—.
+L

Solving the quadratic L2 — L — 1 = 0, we see that the roots are (14 +/5)/2, of which the only
positive root has to be L.

8. Investigate the behavior of each series (convergence, divergence, conditional convergence, absolute con-
vergence). In cases that there is a parameter (p, ¢ or r) find the range of values where the series exhibits
the above behavior.

L3502, p"n? (p>0) 430
2. Yool (—m 5. Xan (¥ =1
3. 200 ﬁv (0<g<p) 6. >y 14-%
Solution:
1. Let a, = p"nP. Then {/a, = pn?/" REN p. So by the root test, the series converges if p < 1

3.

and diverges if p > 1. If p = 1, the series Y n clearly diverges.

. Let a, = (—1)"7%/5. Then

1
nP(vn+1+/n)

Comparing this with n’(“%), we see that > a, converges absolutely for p > 1/2. On the
other hand when p < 0, clearly the series diverges. At p = 0, the partial sums of the series are
sn=>p_1Vk+1—+Vk=+/n+1—1 which clearly diverge. For p € (0,1/2] the series does
not converge absolutely. To check for conditional convergence we apply alternating series test.
Let b, = ¥ "+ VA 1
nP(vn+l+yn)’
series test the series converges conditionally in the range p € (0,1/2].

lan| =

and hence decreases to 0 if p > 0. So by the alternating

We can write
1 1

pr—aqr pr(L=(g/p)")
Since g < p, lim, o (g/p)™ = 0, and so there exists an N such that for alln > N, (¢/p)" < 1/2
or (1—(g/p)™)~* < 2. On the other hand, for any n, (1 — (¢/p)")~* > 1, and so for n > N,

QAp =

1 2
ﬁ<an<7

By comparison test the series converges if p > 1 and diverges if 0 < p < 1.




4. We use the ratio test. If ay = n"/nl, then

an  nt(n+1)  an

ni1 _ (n 1" <n+n”_< U”ﬁiﬂe>L

and so the series diverges.

5. We use root test. Let a, = ({/n —1)". Then
Va,=Yn—-1220<1,
and so the series converges.

6. Let a, = (1+r™)7L. If |r| < 1, then {a,} does not converge to zero, and so the series diverges.
If |r| > 1, limp 0o ™™ = 0, and so there exists an N € N such that 1 + =™ > 1/2 for all
n > N (note that r could be negative, or else 1 + 7~ is of course bigger than 1). Then for
n> N,
[r]—™ 2

= — < —
[an| L+r= " rn’

and so by limit comparison test, the series is absolutely convergent for |r| > 1.

9. (a) Let {a,} be a sequence of of positive real numbers. Show that

a
lim inf < liminf {/a, <limsup {/a,, < limsup ntl

n—o0  Gp n—oo n—00 n—oo  Un

Ap+1

You may assume that each of the quantities is finite, even though the result holds true for ex-
tended reals. Hint. Proceed by contradiction. For instance, for the rightmost inequality, let
U = limsup,,_, a;f and L = limsup,,_,., {/a, and suppose L > U. Then use the equivalent
characterizations of limsup to draw a contradiction.

Solution: We will show that

a
lim sup {/a,, < limsup ntl

n—00 n—oo Qn

The other inequalities also follow in a similar fashion. Denote L = limsup,_,., {/a, and
U = limsup,,_, ., “. We proceed by contradiction, so suppose L > U. Let 8 € (U, L). Then

a

there exists an N such that for all n > N ,

‘ Ap+1
Qn

<5,

or equivalently, |a,+1| < Blay]|. Inductively, one can conclude that |a,| < 87 N|ax|. That is,
for any n > N,
anfV7 < BNy,

Now N is fixed, so taking limsup on both sides, since lim,, o, 8~ N/"|ay|/™ = 3, we see that

limsup |a,|*/™ < 8,

n—oo

which is a contradiction.

(b) Show that if _ a,, converges by the ratio test, then Y a,, also converges by the root test.
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()

(d)

Solution: If )" a, converges by the ratio test, then limsup,,_, . |ant1/an| < 1. But then by
the above set of inequalities, we necessarily have that limsup,,_,., ¥/|an| < 1, and so the series
also converges by the root test.

Consider the sequence {a,}22,

Qn

N 1 o 271%17 n is odd
2nt+(=1)" ST, M s even.

Compute (with proper justifications) limsup {/|a,| and limsup |a,+1/a,|- Show that the series

converges by the root test. Does the ration test work?

Solution: Note that

|an‘ - 21+(,1)n/n 57
and so limsup {/|an| = 1/2. On the other hand,

ani1 {é, n is odd

an 2, n is even,
and so limsup |ap+1/a,| = 2 and liminf |a,+1/a,| = 1/8. Since limsup {/]a,| = 1/2 < 1, the
root test says that the series > a, converges. On the other hand since

Ap+1
GAp

‘<1<limsup’

lim inf ‘ ,

an+1
Gnp,

the ratio test is inconclusive.

Let b, = n"/n!. Show that

lim %: e.

n—oo

Hint. It is easier to compute the limiting ratios.

Solution: Note that

a,  (n+Dlam  (n+1Dnn  nn

Ap+1 _ (n + 1)n+1n! (n + 1)n+1 (n’ + 1)” — (1 + l)n m e
n

An+41
Qn

So liminf,,_,o “2 = limsup,, _, = e. But then by the chain of inequalities in the first

part the middle two terms are also equal, that is, liminf,, . {/a, = limsup,_, {/a, = e,

and so
lim /a, =e.

n—oo

Show that if a,, > 0, and lim,,_, o na, =1 # 0, then > a,, diverges.

Solution: Since na, — [ # 0, applying the definition of convergence with ¢ = |I|/2 > 0, there

exists NV € N such that l
n>N = |nan—l|<%.

In particular, for n > N, a,, > |l|/2n. By the comparison test, since > 1/n diverges, it follows
that > a, also diverges.




(b) Given that > a, converges absolutely, show that Y aP also converges whenever p > 1. Give a

counterexample, if Y a,, only converges conditionally.

Solution: Since > a, converges absolutely, by the divergence test, |a,| — 0. In particular,
there exists N such that for all n > N, |a,| < 1. But then for any p > 1, |a,|? < |a,| when
n > N. By comparison test, Y |a, |’ converges, and hence > a? also converges. This is not
true if Y a, only converges conditionally. For instance, consider a,, = (—1)"/+/n and p = 2.

11. Consider each of the following propositions. Provide short proofs for those that are true and counterex-
amples for any that are not.

(a) If > a,, converges and the sequence {b,} also converges, then > a,b, converges.

(b)

12. (a)

If 3 a,, converges conditionally, then Y n?a,, diverges.

Solution: The proposition is true. If not, then " n2a, converges, and so lim,,_, n2a, = 0.
In particular, there exists N such that for all n > N, |a,| < 1/n?, and so > a,, must converge
absolutely by the comparison test. A contradiction!

If {a,} is a decreasing sequence, and > a,, converges, then lim,, ., na, = 0.

Solution: The proposition is true. Since _ a,, is convergent, lim, . a, = 0. But then since
a, is also decreasing, it follows that a, > 0. By the Cauchy criteria, given any € > 0, there
exists an N such that for alln > m > N,

zn: ap < E
k=m )

Applying this to m = |n/2]| with n > 2N, and using the fact that a,, decreases

k=|n/2]

So given € > 0, if n > 2N, then |na,| < ¢, and hence lim,,_,, na,, = 0.

For any n € N, show that the function p,(z) = 2™ is continuous on all of R. Show the explicit
dependence of § on € and the point that you are looking at.

Solution: We prove continuity at x = a. Let € > 0 be given. We need to estimate

Pn(z) = pala)] = |z" —a”|

= |z —allz" ' 2" a4+ a1
Now, |z —a| < ¢, where 6 > 0 is to be chosen. Suppose, we choose § < 1, then clearly
x| < |a| + 1. A general term on the right is of the form z/a"~'=7 for j = 0,--- ,n — 1. So if
g g J

4 < 1, we have . ‘ 4 .
|27a" 7 ] < (la] + 1) |a|" 71 < (la] +1)" 7.

Then by triangle inequality,

e et < (1 fal)




Soif § <1 and |x —a| < ¢, then
[Pa(@) = pn(a)] <nd(1+ a])" .

Our aim is to make this smaller than ¢, and so simply choose

€

0 < ———.
n(l +[a])n=t

Together with § < 1, we see that if

6 = min (1,W),

then
|z —al <0 = |pn(z) —pu(a)] <e.

Show that f(x) = +/z is continuous on (0, c0).

Solution: Let £ > 0, and |z — a| < § for some § > 0 to be chosen later. Clearly

|z — al )

Ve -val= e va < Vet val

Now, a > 0, by choosing ¢ < a/2,
|t —al <0 = z>a/2.

So
Vo ++va>3va/2,

26
3va

and

IV —+a| <

So simply pick

6 = min (g, #E).

Show that f,(x) = 2'/™ is continuous on (0, co).

Solution: Again, we prove continuity at x = a. Let € > 0. From the identity, we see that
T —a= (xl/n _ al/n)<x1—1/n + xl—Q/nal/n N al—l/n)
Then

|z —af
|x171/n + xrl=2/ngl/n ... + alfl/n‘ .

|ful(z) = fula)| =
Again as before, since a > 0, if 6 < a/2, then x > a/2 and so
e L L e A
where ¢,, is the constant (independent of a)

¢ = ol=l/n 4 ol=2/n o . 4 1.

10



And so if |z —a| < 6 and § < a/2 we have

0

ncnalfl/n

|fn(x) - fn(a)‘ <

So simply pick

6 = min (g, ncnal_l/"s).

Hint. For all parts the following identity might be useful.

a" = b =(a—b)(a" P +a" b4 Fab" 20",

11



