Solutions to Assignment-2

Only submit the questions in red.

1. (a) For any two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n},
$$

unless the right hand side is of the form $\infty-\infty$.
Solution: Assume both the limsups are finite (the other cases are also similar). Let $A=$ $\limsup _{n \rightarrow \infty} a_{n}, B=\limsup \operatorname{sum}_{n \rightarrow \infty} b_{n}$ and $L=\lim \sup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)$. Suppose $L>A+B$. Choose an $\varepsilon>0$ such that $L-\varepsilon>A+B+\varepsilon$. For any $N>0$ there exists an $n>N$ such that

$$
\begin{equation*}
a_{n}+b_{n}>L-\varepsilon . \tag{0.1}
\end{equation*}
$$

On the other hand, there exists N_{1} such that for all $n>N_{1}$,

$$
a_{n}<A+\frac{\varepsilon}{2}
$$

and there exists N_{2} such that for all $n>N_{2}$,

$$
b_{n}<B+\frac{\varepsilon}{2}
$$

But then if $N=\max \left(N_{1}, N_{2}\right)$, then for any $n>N$ we have

$$
a_{n}+b_{n}<A+B+\varepsilon<L-\varepsilon
$$

contradicting (0.1).
(b) Find sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with strict inequality above.

Solution: Let $a_{n}=(-1)^{n}$ and $b_{n}=(-1)^{n-1}$. Then $a_{n}+b_{n}=0$ for all n, and so $\lim \sup _{n \rightarrow \infty}\left(a_{n}+\right.$ $\left.b_{n}\right)=0$ while, $\lim \sup _{n \rightarrow \infty} a_{n}+\lim \sup _{n \rightarrow \infty} b_{n}=1+1=2$.
2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers, and let

$$
S=\left\{x \in \mathbb{R} \mid \exists \text { a sub-sequence } a_{n_{k}} \text { such that } a_{n_{k}} \xrightarrow{k \rightarrow \infty} x\right\}
$$

(a) Show that $L=\limsup a_{n}$ if and only if $L=\sup S$.

Solution: Suppose $L=\limsup a_{n}$. First, we claim that $L \in S$. To see this, note that by the equivalent characterization of limsup, there exists n_{1} such that

$$
a_{n_{1}}>L-1
$$

Given n_{1}, there exists $n_{2}>n_{1}$ such that

$$
a_{n_{2}}>L-\frac{1}{2}
$$

Having chosen $n_{1}<n_{2}<\cdots<n_{k-1}$, let $n_{K}>n_{k-1}$ such that

$$
a_{n_{k}}>L-\frac{1}{k}
$$

Claim. $a_{n_{k}} \xrightarrow{k \rightarrow \infty} L$.
Proof. Let $\varepsilon>0$. Then there exists N such that for all $n>N$,

$$
a_{n}<L+\varepsilon .
$$

Since $n_{k} \xrightarrow{k \rightarrow \infty}$, there exists a K_{1} such that for all $k>K_{1}, n_{k}>N$. In particular, for all $k>K_{1}$,

$$
a_{n_{k}}<L+\varepsilon
$$

Let K_{2} such that $1 / K_{2}<\varepsilon$. Then by our choice of the subsequence $a_{n_{k}}$, for all $k>K_{2}$,

$$
a_{n_{k}}>L-\frac{1}{k}>L-\frac{1}{K_{2}}>L-\varepsilon
$$

In particular, if $K=\max \left(K_{1}, K_{2}\right)$, and $k>K$ then

$$
\left|a_{n_{k}}-L\right|<\varepsilon,
$$

and hence $a_{n_{k}} \xrightarrow{k \rightarrow \infty} L$.
This shows that $L \in S$. In particular, $L \leq \sup S$. Suppose $L<\sup S$. Let $\varepsilon>0$ such that $L+\varepsilon<\sup S$. There exists an N such that for all $n>N$,

$$
a_{n}<L+\varepsilon,
$$

and so for any $x \in S, x<L+\varepsilon$. Taking sup,

$$
\sup S \leq L+\varepsilon
$$

a contradiction. Hence $L=\sup S$.
(b) Formulate and prove the analogous statement for liminf.

Solution: The corresponding statement would be

$$
\liminf _{n \rightarrow \infty} a_{n}=\inf S
$$

One can argue as above, or alternately, use the standard trick that if $b_{n}=-a_{n}$, then

$$
\liminf _{n \rightarrow \infty} a_{n}=-\limsup _{n \rightarrow \infty} b_{n}
$$

Note. From now on, you can use the conclusions of this exercise as a theorem. So now, you have a definition of limsup and two other equivalent characterizations.
3. Find the limsup and liminf of the sequence $\left\{a_{n}\right\}$ defined recursively by

$$
a_{1}=0, a_{2 m}=\frac{a_{2 m-1}}{2}, a_{2 m+1}=\frac{1}{2}+a_{2 m}
$$

Justify your answers with complete proofs.

Solution: To get some intuition, we compute the first few terms of the sequence,

$$
a_{2}=0, a_{3}=\frac{1}{2}, a_{4}=\frac{1}{4}, a_{5}=\frac{3}{4}, a_{6}=\frac{3}{8}, a_{7}=\frac{7}{8}, a_{8}=\frac{7}{16}, a_{9}=\frac{15}{16}
$$

Seeing a pattern, we make the claim -
Claim. $\lim \inf _{n \rightarrow \infty} a_{n}=\frac{1}{2}$ and $\limsup \operatorname{sum}_{n \rightarrow \infty} a_{n}=1$.
Proof. The easiest proof is to simply find a formula for the $n^{\text {th }}$ term. We claim that

$$
a_{n}=\left\{\begin{array}{l}
\frac{2^{m}-1}{2^{m}}, n=2 m+1 \\
\frac{2^{m-1}-1}{2^{m}}, n=2 m .
\end{array}\right.
$$

We prove this by induction. The base cases $n=1$ are seen to be true. Suppose the formula is correct for some $n=2 m-1=2(m-1)+1$. We then prove the formula for $2 m$ and $2 m+1$.

$$
a_{2 m}=\frac{a_{2 m-1}}{2}=\frac{2^{m-1}-1}{2^{m}}
$$

But then again by the recursion formula,

$$
a_{2 m+1}=\frac{1}{2}+a_{2 m}=\frac{1}{2}+\frac{2^{m-1}-1}{2^{m}}=\frac{2^{m}-1}{2^{m}}
$$

Once we have the formula, note that $\left\{a_{2 m+1}\right\}$ is a increasing to 1 and $\left\{a_{2 m}\right\}$ is a sequence increasing to $1 / 2$. Then clearly, $u_{N}=\sup \left\{a_{k} \mid k>N\right\}=1$, and $l_{N}=\inf \left\{a_{k} \mid k>N\right\}>\frac{2^{N-1}-1}{2^{N}}$. Letting $N \rightarrow \infty$, we complete the proof of the claim.
4. (a) Let $\left\{a_{n}\right\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\left\{a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n}=a$.

Solution: If not, then there exists an $\varepsilon>0$ and a subsequence $b_{k}=a_{n_{k}}$ such that

$$
\left|b_{k}-a\right|>\varepsilon
$$

for all k. By Bozlano-Weierstrass, since $\left\{b_{k}\right\}$ is bounded, there exists a further sub-sequence $b_{k_{j}}$ which converges. But $b_{k_{j}}=a_{n_{k_{j}}}$ is also a sub-sequence of a_{n} and since it converges, by the hypothesis, it must converge to a. But by our choice of $\left\{b_{k}\right\},\left|b_{k_{j}}-a\right|>\varepsilon$ for all j, a contradiction.
(b) Now assume that $\left\{a_{n}\right\}$ is a sequence with the property that every subsequence has a further subsequence that converges to the same limit a. Show that the entire sequence $\left\{a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n}=a$.

Solution: If not, then there is an $\varepsilon>0$ and a sub-sequence $b_{k}=a_{n_{k}}$ such that $\left|b_{k}-a\right|>\varepsilon$. By hypothesis, b_{k} has a subsequence, say $\left\{b_{k_{j}}\right\}$, that converges to a. But then

$$
\lim _{j \rightarrow \infty}\left|b_{k_{j}}-a\right|=0
$$

which contradicts the fact that $\left|b_{k_{j}}-a\right|>\varepsilon$.
5. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$
\left|a_{n+1}-a_{n}\right| \leq \frac{1}{2}\left|a_{n}-a_{n-1}\right|
$$

Show that the sequence converges. Hint. Show that the sequence is Cauchy.

Solution: Inductively, we see that for any natural number k,

$$
\left|a_{k+1}-a_{k}\right| \leq \frac{1}{2^{k}}\left|a_{1}-a_{0}\right|
$$

Now if $m>n$ then by triangle inequality

$$
\begin{aligned}
\left|a_{m}-a_{n}\right| & =\left|a_{m}-a_{m-1}+a_{m-1}-a_{m-2}+a_{m-2}-\cdots-a_{n}\right| \\
& \leq\left|a_{m}-a_{m-1}\right|+\left|a_{m-1}-a_{m-2}\right|+\cdots+\left|a_{n+1}-a_{n}\right| \\
& \leq\left|a_{1}-a_{0}\right| \sum_{k=n}^{m-1} \frac{1}{2^{k}} \\
& \leq \frac{\left|a_{1}-a_{0}\right|}{2^{n}} \sum_{k=0}^{\infty} \frac{1}{2^{k}} \\
& \leq 2^{-n}\left|a_{1}-a_{0}\right| .
\end{aligned}
$$

Given $\varepsilon>0$, let N such that $2^{-N}\left|a_{1}-a_{0}\right|<\varepsilon$. Then for any $m>n>N,\left|a_{m}-a_{n}\right|<\varepsilon$, and the sequence is Cauchy.
6. Let $S=\left\{n_{1}, n_{2}, \cdots\right\}$ denote the collection of those positive integers that do not have the digit 0 in their decimal representation. (For example $7 \in S$ but $101 \notin S$). Show that $\sum_{k=1}^{\infty} 1 / n_{k}$ converges. Note. This should be a surprising result in that leaving out only a few (but of course still infinite) terms out of the harmonic series, we end up with a series that suddenly converges.

Solution: Consider the one-digit numbers in S, namely $\{1,2, \cdots, 9\}$. Since each is bigger than one, the sum of reciprocals is

$$
1+\frac{1}{2} \cdots+\frac{1}{9}<9
$$

Next, consider the two-digit numbers in S. There are 81 of them, and each is bigger than 10 , and so the sum of reciprocals satisfies the estimate,

$$
\frac{1}{11}+\frac{1}{12}+\cdots+\frac{1}{19}+\frac{1}{21}+\cdots+\frac{1}{98}+\frac{1}{99}<\frac{81}{10}
$$

In general, consider the subset S_{k} of numbers in S with k digits, that is numbers between 10^{k} and 10^{k+1}. The number of such numbers is 9^{k}. That is because there are k digits, and each digit has 9 options. Moreover, all these numbers are bigger than 10^{k}, and so

$$
\sum_{n \in S_{k}} \frac{1}{n}<\frac{9^{k+1}}{10^{k}}
$$

Summing over the reciprocals of numbers with at-most m-digits,

$$
\sum_{k=1}^{m} \sum_{n \in S_{k}} \frac{1}{n}<9 \sum_{k=1}^{m} \frac{9^{k}}{10^{k}}<\frac{9}{10} \sum_{k=0}^{\infty} \frac{9^{k}}{10^{k}}<\frac{81}{10} \frac{1}{1-\frac{9}{10}}=81
$$

In particular the partial sums of $\sum_{k=1}^{\infty} 1 / n_{k}$ are bounded by 81 and since the terms in the series are positive by the monotone convergence theorem, the series converges.
7. The Fibonacci numbers $\left\{f_{n}\right\}$ are defined by

$$
f_{0}=f_{1}=1, \text { and } f_{n+1}=f_{n}+f_{n-1} \text { for } n=1,2, \cdots
$$

For $n=1,2, \cdots$, we also define $r_{n}=f_{n+1} / f_{n}$.
(a) Find a formula for r_{n+1} in terms of r_{n}. Dividing the above recurrence by f_{n}, we obtain

$$
r_{n}=1+\frac{1}{r_{n-1}}
$$

or

$$
r_{n+1}=1+\frac{1}{r_{n}}
$$

(b) Show that $f_{n} \geq n$ for all $n \geq 2$.

Solution: Easy proof by induction.
(c) Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n+1}$.

Solution: We proceed by induction. For $n=1, f_{n+1} f_{n-1}-f_{n}^{2}=f_{2} f_{0}-f_{1}^{2}=2 \cdot 1-1^{1}=1=$ $(-1)^{1+1}$, and so the identity is verified. Suppose the identity is verified for $n-1$, that is we have $f_{n} f_{n-2}-f_{n-1}^{2}=(-1)^{n}$. Then

$$
\begin{aligned}
f_{n+1} f_{n-1}-f_{n}^{2} & =\left(f_{n}+f_{n-1}\right) f_{n-1}-f_{n}^{2} \\
& =f_{n-1}^{2}+f_{n}\left(f_{n-1}-f_{n}\right) \\
& =f_{n-1}^{2}-f_{n} f_{n-2}=-(-1)^{n}=(-1)^{n+1}
\end{aligned}
$$

(d) Hence show that if $n \geq 2$, then

$$
\left|r_{n+1}-r_{n}\right| \leq \frac{1}{(n-1)^{2}}
$$

Solution: Note that

$$
\left|r_{n}-r_{n-1}\right|=\left|\frac{f_{n+1}}{f_{n}}-\frac{f_{n}}{f_{n-1}}\right|=\frac{1}{f_{n} f_{n-1}}
$$

by the identity. By part (b), $f_{n}>n$ for all $n \geq 2$ and so the proof is completed by the elementary observation that $(n-1)^{2}<n(n-1)$.
(e) Hence show that the sequence of ratios $\left\{r_{n}\right\}$ converge, and compute it's limit. Note. This limit is the so-called golden ratio.

Solution: For any $n<m$, by the triangle inequality and part(d),

$$
\left|r_{m}-r_{n}\right| \leq \frac{1}{n^{2}}+\frac{1}{(n+1)^{2}}+\cdots \frac{1}{(m-1)^{2}} .
$$

Since the right hand side is the tail end of a converging series, by the Cauchy criteria, for any $\varepsilon>0$, there exists an N such that for any $n, m>N$, the right hand side can be made smaller than ε. This shows that $\left\{r_{n}\right\}$ is Cauchy, and hence converges. To find the actual limit, first note that if $L=\lim _{n \rightarrow \infty} r_{n}$, then $L \neq 0$. letting $n \rightarrow \infty$ on both sides of the recurrence obtained in part(a) we obtain

$$
L=1+\frac{1}{L} .
$$

Solving the quadratic $L^{2}-L-1=0$, we see that the roots are $(1 \pm \sqrt{5}) / 2$, of which the only positive root has to be L.
8. Investigate the behavior of each series (convergence, divergence, conditional convergence, absolute convergence). In cases that there is a parameter (p, q or r) find the range of values where the series exhibits the above behavior.

1. $\sum_{n=1}^{\infty} p^{n} n^{p}(p>0)$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}$
3. $\sum_{n=1}^{\infty} \frac{1}{p^{n}-q^{n}},(0<q<p)$
4. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
5. $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)^{n}$
6. $\sum_{n=1}^{\infty} \frac{1}{1+r^{n}}$.

Solution:

1. Let $a_{n}=p^{n} n^{p}$. Then $\sqrt[n]{a_{n}}=p n^{p / n} \xrightarrow{n \rightarrow \infty} p$. So by the root test, the series converges if $p<1$ and diverges if $p>1$. If $p=1$, the series $\sum n$ clearly diverges.
2. Let $a_{n}=(-1)^{n} \frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}$. Then

$$
\left|a_{n}\right|=\frac{1}{n^{p}(\sqrt{n+1}+\sqrt{n})}
$$

Comparing this with $n^{-\left(p+\frac{1}{2}\right)}$, we see that $\sum a_{n}$ converges absolutely for $p>1 / 2$. On the other hand when $p<0$, clearly the series diverges. At $p=0$, the partial sums of the series are $s_{n}=\sum_{k=1}^{n} \sqrt{k+1}-\sqrt{k}=\sqrt{n+1}-1$ which clearly diverge. For $p \in(0,1 / 2]$ the series does not converge absolutely. To check for conditional convergence we apply alternating series test. Let $b_{n}=\frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}=\frac{1}{n^{p}(\sqrt{n+1}+\sqrt{n})}$, and hence decreases to 0 if $p>0$. So by the alternating series test the series converges conditionally in the range $p \in(0,1 / 2]$.
3. We can write

$$
a_{n}=\frac{1}{p^{n}-q^{n}}=\frac{1}{p^{n}\left(1-(q / p)^{n}\right)} .
$$

Since $q<p, \lim _{n \rightarrow \infty}(q / p)^{n}=0$, and so there exists an N such that for all $n>N,(q / p)^{n}<1 / 2$ or $\left(1-(q / p)^{n}\right)^{-1}<2$. On the other hand, for any $n,\left(1-(q / p)^{n}\right)^{-1}>1$, and so for $n>N$,

$$
\frac{1}{p^{n}}<a_{n}<\frac{2}{p^{n}}
$$

By comparison test the series converges if $p>1$ and diverges if $0<p \leq 1$.
4. We use the ratio test. If $a_{N}=n^{n} / n$!, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1}}{n^{n}(n+1)}=\frac{(n+1)^{n}}{n^{n}}=\left(1+\frac{1}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e>1,
$$

and so the series diverges.
5. We use root test. Let $a_{n}=(\sqrt[n]{n}-1)^{n}$. Then

$$
\sqrt[n]{a_{n}}=\sqrt[n]{n}-1 \xrightarrow{n \rightarrow \infty} 0<1
$$

and so the series converges.
6. Let $a_{n}=\left(1+r^{n}\right)^{-1}$. If $|r| \leq 1$, then $\left\{a_{n}\right\}$ does not converge to zero, and so the series diverges. If $|r|>1, \lim _{n \rightarrow \infty} r^{-n}=0$, and so there exists an $N \in \mathbb{N}$ such that $1+r^{-n}>1 / 2$ for all $n>N$ (note that r could be negative, or else $1+r^{-n}$ is of course bigger than 1). Then for $n>N$,

$$
\left|a_{n}\right|=\frac{|r|^{-n}}{1+r^{-n}}<\frac{2}{|r|^{n}}
$$

and so by limit comparison test, the series is absolutely convergent for $|r|>1$.
9. (a) Let $\left\{a_{n}\right\}$ be a sequence of of positive real numbers. Show that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

You may assume that each of the quantities is finite, even though the result holds true for extended reals. Hint. Proceed by contradiction. For instance, for the rightmost inequality, let $U=\lim \sup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ and $L=\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ and suppose $L>U$. Then use the equivalent characterizations of lim sup to draw a contradiction.

Solution: We will show that

$$
\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

The other inequalities also follow in a similar fashion. Denote $L=\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ and $U=\lim \sup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$. We proceed by contradiction, so suppose $L>U$. Let $\beta \in(U, L)$. Then there exists an N such that for all $n>N$,

$$
\left|\frac{a_{n+1}}{a_{n}}\right|<\beta
$$

or equivalently, $\left|a_{n+1}\right|<\beta\left|a_{N}\right|$. Inductively, one can conclude that $\left|a_{n}\right|<\beta^{n-N}\left|a_{N}\right|$. That is, for any $n>N$,

$$
\left|a_{n}\right|^{1 / n}<\beta^{1-N / n}\left|a_{N}\right|^{1 / n} .
$$

Now N is fixed, so taking limsup on both sides, since $\lim _{n \rightarrow \infty} \beta^{1-N / n}\left|a_{N}\right|^{1 / n}=\beta$, we see that

$$
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n} \leq \beta,
$$

which is a contradiction.
(b) Show that if $\sum a_{n}$ converges by the ratio test, then $\sum a_{n}$ also converges by the root test.

Solution: If $\sum a_{n}$ converges by the ratio test, then $\lim \sup _{n \rightarrow \infty}\left|a_{n+1} / a_{n}\right|<1$. But then by the above set of inequalities, we necessarily have that $\lim _{\sup _{n \rightarrow \infty}} \sqrt[n]{\left|a_{n}\right|}<1$, and so the series also converges by the root test.
(c) Consider the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$,

$$
a_{n}=\frac{1}{2^{n+(-1)^{n}}}= \begin{cases}\frac{1}{2^{n-1}}, & n \text { is odd } \\ \frac{1}{2^{n+1}}, & n \text { is even. }\end{cases}
$$

Compute (with proper justifications) limsup $\sqrt[n]{\left|a_{n}\right|}$ and $\lim \sup \left|a_{n+1} / a_{n}\right|$. Show that the series converges by the root test. Does the ration test work?

Solution: Note that

$$
\sqrt[n]{\left|a_{n}\right|}=\frac{1}{2^{1+(-1)^{n} / n}} \xrightarrow{n \rightarrow \infty} \frac{1}{2},
$$

and so $\lim \sup \sqrt[n]{\left|a_{n}\right|}=1 / 2$. On the other hand,

$$
\frac{a_{n+1}}{a_{n}}=\left\{\begin{array}{l}
\frac{1}{8}, n \text { is odd } \\
2, n \text { is even },
\end{array}\right.
$$

and so $\lim \sup \left|a_{n+1} / a_{n}\right|=2$ and $\lim \inf \left|a_{n+1} / a_{n}\right|=1 / 8$. Since $\lim \sup \sqrt[n]{\left|a_{n}\right|}=1 / 2<1$, the root test says that the series $\sum a_{n}$ converges. On the other hand since

$$
\lim \inf \left|\frac{a_{n+1}}{a_{n}}\right|<1<\lim \sup \left|\frac{a_{n+1}}{a_{n}}\right|,
$$

the ratio test is inconclusive.
(d) Let $b_{n}=n^{n} / n$!. Show that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=e
$$

Hint. It is easier to compute the limiting ratios.
Solution: Note that

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{n+1} n!}{(n+1)!n^{n}}=\frac{(n+1)^{n+1}}{(n+1) n^{n}}=\frac{(n+1)^{n}}{n^{n}}=\left(1+\frac{1}{n}\right)^{n} \xrightarrow{n \rightarrow \infty} e .
$$

So $\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\limsup \sin _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=e$. But then by the chain of inequalities in the first part the middle two terms are also equal, that is, $\lim _{\inf }{ }_{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim \sup _{n \rightarrow \infty} \sqrt[n]{a_{n}}=e$, and so

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=e .
$$

10. (a) Show that if $a_{n}>0$, and $\lim _{n \rightarrow \infty} n a_{n}=l \neq 0$, then $\sum a_{n}$ diverges.

Solution: Since $n a_{n} \rightarrow l \neq 0$, applying the definition of convergence with $\varepsilon=|l| / 2>0$, there exists $N \in \mathbb{N}$ such that

$$
n>N \Longrightarrow\left|n a_{n}-l\right|<\frac{|l|}{2} .
$$

In particular, for $n>N, a_{n}>|l| / 2 n$. By the comparison test, since $\sum 1 / n$ diverges, it follows that $\sum a_{n}$ also diverges.
(b) Given that $\sum a_{n}$ converges absolutely, show that $\sum a_{n}^{p}$ also converges whenever $p>1$. Give a counterexample, if $\sum a_{n}$ only converges conditionally.

Solution: Since $\sum a_{n}$ converges absolutely, by the divergence test, $\left|a_{n}\right| \rightarrow 0$. In particular, there exists N such that for all $n>N,\left|a_{n}\right|<1$. But then for any $p>1,\left|a_{n}\right|^{p}<\left|a_{n}\right|$ when $n>N$. By comparison test, $\sum\left|a_{n}\right|^{p}$ converges, and hence $\sum a_{n}^{p}$ also converges. This is not true if $\sum a_{n}$ only converges conditionally. For instance, consider $a_{n}=(-1)^{n} / \sqrt{n}$ and $p=2$.
11. Consider each of the following propositions. Provide short proofs for those that are true and counterexamples for any that are not.
(a) If $\sum a_{n}$ converges and the sequence $\left\{b_{n}\right\}$ also converges, then $\sum a_{n} b_{n}$ converges.
(b) If $\sum a_{n}$ converges conditionally, then $\sum n^{2} a_{n}$ diverges.

Solution: The proposition is true. If not, then $\sum n^{2} a_{n}$ converges, and so $\lim _{n \rightarrow \infty} n^{2} a_{n}=0$. In particular, there exists N such that for all $n>N,\left|a_{n}\right|<1 / n^{2}$, and so $\sum a_{n}$ must converge absolutely by the comparison test. A contradiction!
(c) If $\left\{a_{n}\right\}$ is a decreasing sequence, and $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} n a_{n}=0$.

Solution: The proposition is true. Since $\sum a_{n}$ is convergent, $\lim _{n \rightarrow \infty} a_{n}=0$. But then since a_{n} is also decreasing, it follows that $a_{n} \geq 0$. By the Cauchy criteria, given any $\varepsilon>0$, there exists an N such that for all $n>m>N$,

$$
\sum_{k=m}^{n} a_{k}<\frac{\varepsilon}{2}
$$

Applying this to $m=\lfloor n / 2\rfloor$ with $n>2 N$, and using the fact that a_{n} decreases

$$
\frac{\varepsilon}{2}>\sum_{k=\lfloor n / 2\rfloor}^{n} a_{k}>\frac{n a_{n}}{2} .
$$

So given $\varepsilon>0$, if $n>2 N$, then $\left|n a_{n}\right|<\varepsilon$, and hence $\lim _{n \rightarrow \infty} n a_{n}=0$.
12. (a) For any $n \in \mathbb{N}$, show that the function $p_{n}(x)=x^{n}$ is continuous on all of \mathbb{R}. Show the explicit dependence of δ on ε and the point that you are looking at.

Solution: We prove continuity at $x=a$. Let $\varepsilon>0$ be given. We need to estimate

$$
\begin{aligned}
\left|p_{n}(x)-p_{n}(a)\right| & =\left|x^{n}-a^{n}\right| \\
& =|x-a|\left|x^{n-1}+x^{n-2} a+\cdots+a^{n-1}\right|
\end{aligned}
$$

Now, $|x-a|<\delta$, where $\delta>0$ is to be chosen. Suppose, we choose $\delta<1$, then clearly $|x|<|a|+1$. A general term on the right is of the form $x^{j} a^{n-1-j}$ for $j=0, \cdots, n-1$. So if $\delta<1$, we have

$$
\left|x^{j} a^{n-1-j}\right|<(|a|+1)^{j}|a|^{n-1-j}<(|a|+1)^{n-1}
$$

Then by triangle inequality,

$$
\left|x^{n-1}+x^{n-2} a+\cdots+a^{n-1}\right|<n(1+|a|)^{n-1}
$$

So if $\delta<1$ and $|x-a|<\delta$, then

$$
\left|p_{n}(x)-p_{n}(a)\right|<n \delta(1+|a|)^{n-1}
$$

Our aim is to make this smaller than ε, and so simply choose

$$
\delta<\frac{\varepsilon}{n(1+|a|)^{n-1}}
$$

Together with $\delta<1$, we see that if

$$
\delta=\min \left(1, \frac{\varepsilon}{n(1+|a|)^{n-1}}\right),
$$

then

$$
|x-a|<\delta \Longrightarrow\left|p_{n}(x)-p_{n}(a)\right|<\varepsilon .
$$

(b) Show that $f(x)=\sqrt{x}$ is continuous on $(0, \infty)$.

Solution: Let $\varepsilon>0$, and $|x-a|<\delta$ for some $\delta>0$ to be chosen later. Clearly

$$
|\sqrt{x}-\sqrt{a}|=\frac{|x-a|}{|\sqrt{x}+\sqrt{a}|}<\frac{\delta}{|\sqrt{x}+\sqrt{a}|}
$$

Now, $a>0$, by choosing $\delta<a / 2$,

$$
|x-a|<\delta \Longrightarrow x>a / 2
$$

So

$$
\sqrt{x}+\sqrt{a}>3 \sqrt{a} / 2
$$

and

$$
|\sqrt{x}-\sqrt{a}|<\frac{2 \delta}{3 \sqrt{a}}
$$

So simply pick

$$
\delta=\min \left(\frac{a}{2}, \frac{3 \sqrt{a}}{2} \varepsilon\right)
$$

(c) Show that $f_{n}(x)=x^{1 / n}$ is continuous on $(0, \infty)$.

Solution: Again, we prove continuity at $x=a$. Let $\varepsilon>0$. From the identity, we see that

$$
x-a=\left(x^{1 / n}-a^{1 / n}\right)\left(x^{1-1 / n}+x^{1-2 / n} a^{1 / n} \cdots+a^{1-1 / n}\right)
$$

Then

$$
\left|f_{n}(x)-f_{n}(a)\right|=\frac{|x-a|}{\left|x^{1-1 / n}+x^{1-2 / n} a^{1 / n} \cdots+a^{1-1 / n}\right|}
$$

Again as before, since $a>0$, if $\delta<a / 2$, then $x>a / 2$ and so

$$
x^{1-1 / n}+x^{1-2 / n} a^{1 / n} \cdots+a^{1-1 / n}>n a^{1-1 / n} c_{n}
$$

where c_{n} is the constant (independent of a)

$$
c_{n}=2^{1-1 / n}+2^{1-2 / n}+\cdots+1 .
$$

And so if $|x-a|<\delta$ and $\delta<a / 2$ we have

$$
\left|f_{n}(x)-f_{n}(a)\right|<\frac{\delta}{n c_{n} a^{1-1 / n}}
$$

So simply pick

$$
\delta=\min \left(\frac{a}{2}, n c_{n} a^{1-1 / n} \varepsilon\right)
$$

Hint. For all parts the following identity might be useful.

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right)
$$

