
Solutions to Assignment-2

Only submit the questions in red.

1. (a) For any two sequences {an} and {bn} show that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

unless the right hand side is of the form ∞−∞.

Solution: Assume both the limsups are finite (the other cases are also similar). Let A =
lim supn→∞ an, B = lim supn→∞ bn and L = lim supn→∞(an + bn). Suppose L > A + B.
Choose an ε > 0 such that L − ε > A + B + ε. For any N > 0 there exists an n > N such
that

an + bn > L− ε. (0.1)

On the other hand, there exists N1 such that for all n > N1,

an < A+
ε

2
,

and there exists N2 such that for all n > N2,

bn < B +
ε

2
.

But then if N = max(N1, N2), then for any n > N we have

an + bn < A+B + ε < L− ε,

contradicting (0.1).

(b) Find sequences {an} and {bn} with strict inequality above.

Solution: Let an = (−1)n and bn = (−1)n−1. Then an+bn = 0 for all n, and so lim supn→∞(an+
bn) = 0 while, lim supn→∞ an + lim supn→∞ bn = 1 + 1 = 2.

2. Let {an} be a sequence of real numbers, and let

S = {x ∈ R | ∃ a sub-sequence ank
such that ank

k→∞−−−−→ x}.

(a) Show that L = lim sup an if and only if L = supS.

Solution: Suppose L = lim sup an. First, we claim that L ∈ S. To see this, note that by the
equivalent characterization of limsup, there exists n1 such that

an1
> L− 1.
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Given n1, there exists n2 > n1 such that

an2 > L− 1

2
.

Having chosen n1 < n2 < · · · < nk−1, let nK > nk−1 such that

ank
> L− 1

k
.

Claim. ank

k→∞−−−−→ L.

Proof. Let ε > 0. Then there exists N such that for all n > N ,

an < L+ ε.

Since nk
k→∞−−−−→, there exists a K1 such that for all k > K1, nk > N . In particular, for all

k > K1,
ank

< L+ ε.

Let K2 such that 1/K2 < ε. Then by our choice of the subsequence ank
, for all k > K2,

ank
> L− 1

k
> L− 1

K2
> L− ε.

In particular, if K = max(K1,K2), and k > K then

|ank
− L| < ε,

and hence ank

k→∞−−−−→ L.

This shows that L ∈ S. In particular, L ≤ supS. Suppose L < supS. Let ε > 0 such that
L+ ε < supS. There exists an N such that for all n > N ,

an < L+ ε,

and so for any x ∈ S, x < L+ ε. Taking sup,

supS ≤ L+ ε,

a contradiction. Hence L = supS.

(b) Formulate and prove the analogous statement for lim inf.

Solution: The corresponding statement would be

lim inf
n→∞

an = inf S.

One can argue as above, or alternately, use the standard trick that if bn = −an, then

lim inf
n→∞

an = − lim sup
n→∞

bn.

Note. From now on, you can use the conclusions of this exercise as a theorem. So now, you have a
definition of lim sup and two other equivalent characterizations.
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3. Find the lim sup and lim inf of the sequence {an} defined recursively by

a1 = 0, a2m =
a2m−1

2
, a2m+1 =

1

2
+ a2m.

Justify your answers with complete proofs.

Solution: To get some intuition, we compute the first few terms of the sequence,

a2 = 0, a3 =
1

2
, a4 =

1

4
, a5 =

3

4
, a6 =

3

8
, a7 =

7

8
, a8 =

7

16
, a9 =

15

16
.

Seeing a pattern, we make the claim -

Claim. lim infn→∞ an = 1
2 and lim supn→∞ an = 1.

Proof. The easiest proof is to simply find a formula for the nth term. We claim that

an =

{
2m−1
2m , n = 2m+ 1

2m−1−1
2m , n = 2m.

We prove this by induction. The base cases n = 1 are seen to be true. Suppose the formula is
correct for some n = 2m− 1 = 2(m− 1) + 1. We then prove the formula for 2m and 2m+ 1.

a2m =
a2m−1

2
=

2m−1 − 1

2m
.

But then again by the recursion formula,

a2m+1 =
1

2
+ a2m =

1

2
+

2m−1 − 1

2m
=

2m − 1

2m
.

Once we have the formula, note that{a2m+1} is a increasing to 1 and {a2m} is a sequence increasing

to 1/2. Then clearly, uN = sup{ak | k > N} = 1, and lN = inf{ak | k > N} > 2N−1−1
2N

. Letting
N →∞, we complete the proof of the claim.

4. (a) Let {an} be a bounded sequence with the property that every convergent subsequence converges to
the same limit a. Show that the entire sequence {an} converges and limn→∞ an = a.

Solution: If not, then there exists an ε > 0 and a subsequence bk = ank
such that

|bk − a| > ε

for all k. By Bozlano-Weierstrass, since {bk} is bounded, there exists a further sub-sequence
bkj

which converges. But bkj
= ankj

is also a sub-sequence of an and since it converges, by

the hypothesis, it must converge to a. But by our choice of {bk}, |bkj
− a| > ε for all j, a

contradiction.

(b) Now assume that {an} is a sequence with the property that every subsequence has a further sub-
sequence that converges to the same limit a. Show that the entire sequence {an} converges and
limn→∞ an = a.

Solution: If not, then there is an ε > 0 and a sub-sequence bk = ank
such that |bk − a| > ε.

By hypothesis, bk has a subsequence, say {bkj
}, that converges to a. But then

lim
j→∞

|bkj − a| = 0,
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which contradicts the fact that |bkj
− a| > ε.

5. Let {an}∞n=0 be a sequence of real numbers satisfying

|an+1 − an| ≤
1

2
|an − an−1|.

Show that the sequence converges. Hint. Show that the sequence is Cauchy.

Solution: Inductively, we see that for any natural number k,

|ak+1 − ak| ≤
1

2k
|a1 − a0|.

Now if m > n then by triangle inequality

|am − an| = |am − am−1 + am−1 − am−2 + am−2 − · · · − an|
≤ |am − am−1|+ |am−1 − am−2|+ · · ·+ |an+1 − an|

≤ |a1 − a0|
m−1∑
k=n

1

2k

≤ |a1 − a0|
2n

∞∑
k=0

1

2k

≤ 2−n|a1 − a0|.

Given ε > 0, let N such that 2−N |a1 − a0| < ε. Then for any m > n > N , |am − an| < ε, and the
sequence is Cauchy.

6. Let S = {n1, n2, · · · } denote the collection of those positive integers that do not have the digit 0 in their
decimal representation. (For example 7 ∈ S but 101 /∈ S). Show that

∑∞
k=1 1/nk converges. Note.

This should be a surprising result in that leaving out only a few (but of course still infinite) terms out
of the harmonic series, we end up with a series that suddenly converges.

Solution: Consider the one-digit numbers in S, namely {1, 2, · · · , 9}. Since each is bigger than one,
the sum of reciprocals is

1 +
1

2
· · ·+ 1

9
< 9.

Next, consider the two-digit numbers in S. There are 81 of them, and each is bigger than 10, and
so the sum of reciprocals satisfies the estimate,

1

11
+

1

12
+ · · ·+ 1

19
+

1

21
+ · · ·+ 1

98
+

1

99
<

81

10
.

In general, consider the subset Sk of numbers in S with k digits, that is numbers between 10k and
10k+1. The number of such numbers is 9k. That is because there are k digits, and each digit has 9
options. Moreover, all these numbers are bigger than 10k, and so

∑
n∈Sk

1

n
<

9k+1

10k
.
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Summing over the reciprocals of numbers with at-most m-digits,

m∑
k=1

∑
n∈Sk

1

n
< 9

m∑
k=1

9k

10k
<

9

10

∞∑
k=0

9k

10k
<

81

10

1

1− 9
10

= 81.

In particular the partial sums of
∑∞

k=1 1/nk are bounded by 81 and since the terms in the series are
positive by the monotone convergence theorem, the series converges.

7. The Fibonacci numbers {fn} are defined by

f0 = f1 = 1, and fn+1 = fn + fn−1 for n = 1, 2, · · · .

For n = 1, 2, · · · , we also define rn = fn+1/fn.

(a) Find a formula for rn+1 in terms of rn. Dividing the above recurrence by fn, we obtain

rn = 1 +
1

rn−1
,

or

rn+1 = 1 +
1

rn
.

(b) Show that fn ≥ n for all n ≥ 2.

Solution: Easy proof by induction.

(c) Show that fn+1fn−1 − f2n = (−1)n+1.

Solution: We proceed by induction. For n = 1, fn+1fn−1 − f2n = f2f0 − f21 = 2 · 1− 11 = 1 =
(−1)1+1, and so the identity is verified. Suppose the identity is verified for n − 1, that is we
have fnfn−2 − f2n−1 = (−1)n. Then

fn+1fn−1 − f2n = (fn + fn−1)fn−1 − f2n
= f2n−1 + fn(fn−1 − fn)

= f2n−1 − fnfn−2 = −(−1)n = (−1)n+1.

(d) Hence show that if n ≥ 2, then

|rn+1 − rn| ≤
1

(n− 1)2
.

Solution: Note that

|rn − rn−1| =
∣∣∣fn+1

fn
− fn
fn−1

∣∣∣ =
1

fnfn−1

by the identity. By part (b), fn > n for all n ≥ 2 and so the proof is completed by the
elementary observation that (n− 1)2 < n(n− 1).

(e) Hence show that the sequence of ratios {rn} converge, and compute it’s limit. Note. This limit is
the so-called golden ratio.
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Solution: For any n < m, by the triangle inequality and part(d),

|rm − rn| ≤
1

n2
+

1

(n+ 1)2
+ · · · 1

(m− 1)2
.

Since the right hand side is the tail end of a converging series, by the Cauchy criteria, for any
ε > 0, there exists an N such that for any n,m > N , the right hand side can be made smaller
than ε. This shows that {rn} is Cauchy, and hence converges. To find the actual limit, first note
that if L = limn→∞ rn, then L 6= 0. letting n→∞ on both sides of the recurrence obtained in
part(a) we obtain

L = 1 +
1

L
.

Solving the quadratic L2 − L− 1 = 0, we see that the roots are (1±
√

5)/2, of which the only
positive root has to be L.

8. Investigate the behavior of each series (convergence, divergence, conditional convergence, absolute con-
vergence). In cases that there is a parameter (p, q or r) find the range of values where the series exhibits
the above behavior.

1.
∑∞

n=1 p
nnp (p > 0)

2.
∑∞

n=1(−1)n
√
n+1−

√
n

np

3.
∑∞

n=1
1

pn−qn , (0 < q < p)

4.
∑∞

n=1
n!
nn

5.
∑∞

n=1( n
√
n− 1)n

6.
∑∞

n=1
1

1+rn .

Solution:

1. Let an = pnnp. Then n
√
an = pnp/n

n→∞−−−−→ p. So by the root test, the series converges if p < 1
and diverges if p > 1. If p = 1, the series

∑
n clearly diverges.

2. Let an = (−1)n
√
n+1−

√
n

np . Then

|an| =
1

np(
√
n+ 1 +

√
n)
.

Comparing this with n−(p+
1
2 ), we see that

∑
an converges absolutely for p > 1/2. On the

other hand when p < 0, clearly the series diverges. At p = 0, the partial sums of the series are
sn =

∑n
k=1

√
k + 1−

√
k =
√
n+ 1− 1 which clearly diverge. For p ∈ (0, 1/2] the series does

not converge absolutely. To check for conditional convergence we apply alternating series test.

Let bn =
√
n+1−

√
n

np = 1
np(
√
n+1+

√
n)

, and hence decreases to 0 if p > 0. So by the alternating

series test the series converges conditionally in the range p ∈ (0, 1/2].

3. We can write

an =
1

pn − qn
=

1

pn(1− (q/p)n)
.

Since q < p, limn→∞(q/p)n = 0, and so there exists an N such that for all n > N , (q/p)n < 1/2
or (1− (q/p)n)−1 < 2. On the other hand, for any n, (1− (q/p)n)−1 > 1, and so for n > N ,

1

pn
< an <

2

pn
.

By comparison test the series converges if p > 1 and diverges if 0 < p ≤ 1.
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4. We use the ratio test. If aN = nn/n!, then

an+1

an
=

(n+ 1)n+1

nn(n+ 1)
=

(n+ 1)n

nn
=
(

1 +
1

n

)n n→∞−−−−→ e > 1,

and so the series diverges.

5. We use root test. Let an = ( n
√
n− 1)n. Then

n
√
an = n

√
n− 1

n→∞−−−−→ 0 < 1,

and so the series converges.

6. Let an = (1+rn)−1. If |r| ≤ 1, then {an} does not converge to zero, and so the series diverges.
If |r| > 1, limn→∞ r−n = 0, and so there exists an N ∈ N such that 1 + r−n > 1/2 for all
n > N (note that r could be negative, or else 1 + r−n is of course bigger than 1). Then for
n > N ,

|an| =
|r|−n

1 + r−n
<

2

|r|n
,

and so by limit comparison test, the series is absolutely convergent for |r| > 1.

9. (a) Let {an} be a sequence of of positive real numbers. Show that

lim inf
n→∞

an+1

an
≤ lim inf

n→∞
n
√
an ≤ lim sup

n→∞
n
√
an ≤ lim sup

n→∞

an+1

an
.

You may assume that each of the quantities is finite, even though the result holds true for ex-
tended reals. Hint. Proceed by contradiction. For instance, for the rightmost inequality, let
U = lim supn→∞

an+1

an
and L = lim supn→∞

n
√
an and suppose L > U . Then use the equivalent

characterizations of lim sup to draw a contradiction.

Solution: We will show that

lim sup
n→∞

n
√
an ≤ lim sup

n→∞

an+1

an
.

The other inequalities also follow in a similar fashion. Denote L = lim supn→∞
n
√
an and

U = lim supn→∞
an+1

an
. We proceed by contradiction, so suppose L > U . Let β ∈ (U,L). Then

there exists an N such that for all n > N ,∣∣∣an+1

an

∣∣∣ < β,

or equivalently, |an+1| < β|aN |. Inductively, one can conclude that |an| < βn−N |aN |. That is,
for any n > N ,

|an|1/n < β1−N/n|aN |1/n.

Now N is fixed, so taking limsup on both sides, since limn→∞ β1−N/n|aN |1/n = β, we see that

lim sup
n→∞

|an|1/n ≤ β,

which is a contradiction.

(b) Show that if
∑
an converges by the ratio test, then

∑
an also converges by the root test.
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Solution: If
∑
an converges by the ratio test, then lim supn→∞ |an+1/an| < 1. But then by

the above set of inequalities, we necessarily have that lim supn→∞
n
√
|an| < 1, and so the series

also converges by the root test.

(c) Consider the sequence {an}∞n=0,

an =
1

2n+(−1)n =

{
1

2n−1 , n is odd
1

2n+1 , n is even.

Compute (with proper justifications) lim sup n
√
|an| and lim sup |an+1/an|. Show that the series

converges by the root test. Does the ration test work?

Solution: Note that
n
√
|an| =

1

21+(−1)n/n
n→∞−−−−→ 1

2
,

and so lim sup n
√
|an| = 1/2. On the other hand,

an+1

an
=

{
1
8 , n is odd

2, n is even,

and so lim sup |an+1/an| = 2 and lim inf |an+1/an| = 1/8. Since lim sup n
√
|an| = 1/2 < 1, the

root test says that the series
∑
an converges. On the other hand since

lim inf
∣∣∣an+1

an

∣∣∣ < 1 < lim sup
∣∣∣an+1

an

∣∣∣,
the ratio test is inconclusive.

(d) Let bn = nn/n!. Show that

lim
n→∞

n
√
bn = e.

Hint. It is easier to compute the limiting ratios.

Solution: Note that

an+1

an
=

(n+ 1)n+1n!

(n+ 1)!nn
=

(n+ 1)n+1

(n+ 1)nn
=

(n+ 1)n

nn
=
(

1 +
1

n

)n n→∞−−−−→ e.

So lim infn→∞
an+1

an
= lim supn→∞

an+1

an
= e. But then by the chain of inequalities in the first

part the middle two terms are also equal, that is, lim infn→∞ n
√
an = lim supn→∞

n
√
an = e,

and so
lim

n→∞
n
√
an = e.

10. (a) Show that if an > 0, and limn→∞ nan = l 6= 0, then
∑
an diverges.

Solution: Since nan → l 6= 0, applying the definition of convergence with ε = |l|/2 > 0, there
exists N ∈ N such that

n > N =⇒ |nan − l| <
|l|
2
.

In particular, for n > N , an > |l|/2n. By the comparison test, since
∑

1/n diverges, it follows
that

∑
an also diverges.
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(b) Given that
∑
an converges absolutely, show that

∑
apn also converges whenever p > 1. Give a

counterexample, if
∑
an only converges conditionally.

Solution: Since
∑
an converges absolutely, by the divergence test, |an| → 0. In particular,

there exists N such that for all n > N , |an| < 1. But then for any p > 1, |an|p < |an| when
n > N . By comparison test,

∑
|an|p converges, and hence

∑
apn also converges. This is not

true if
∑
an only converges conditionally. For instance, consider an = (−1)n/

√
n and p = 2.

11. Consider each of the following propositions. Provide short proofs for those that are true and counterex-
amples for any that are not.

(a) If
∑
an converges and the sequence {bn} also converges, then

∑
anbn converges.

(b) If
∑
an converges conditionally, then

∑
n2an diverges.

Solution: The proposition is true. If not, then
∑
n2an converges, and so limn→∞ n2an = 0.

In particular, there exists N such that for all n > N , |an| < 1/n2, and so
∑
an must converge

absolutely by the comparison test. A contradiction!

(c) If {an} is a decreasing sequence, and
∑
an converges, then limn→∞ nan = 0.

Solution: The proposition is true. Since
∑
an is convergent, limn→∞ an = 0. But then since

an is also decreasing, it follows that an ≥ 0. By the Cauchy criteria, given any ε > 0, there
exists an N such that for all n > m > N ,

n∑
k=m

ak <
ε

2
.

Applying this to m = bn/2c with n > 2N , and using the fact that an decreases

ε

2
>

n∑
k=bn/2c

ak >
nan

2
.

So given ε > 0, if n > 2N , then |nan| < ε, and hence limn→∞ nan = 0.

12. (a) For any n ∈ N, show that the function pn(x) = xn is continuous on all of R. Show the explicit
dependence of δ on ε and the point that you are looking at.

Solution: We prove continuity at x = a. Let ε > 0 be given. We need to estimate

|pn(x)− pn(a)| = |xn − an|
= |x− a||xn−1 + xn−2a+ · · ·+ an−1|.

Now, |x − a| < δ, where δ > 0 is to be chosen. Suppose, we choose δ < 1, then clearly
|x| < |a| + 1. A general term on the right is of the form xjan−1−j for j = 0, · · · , n − 1. So if
δ < 1, we have

|xjan−1−j | < (|a|+ 1)j |a|n−1−j < (|a|+ 1)n−1.

Then by triangle inequality,

|xn−1 + xn−2a+ · · ·+ an−1| < n(1 + |a|)n−1.
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So if δ < 1 and |x− a| < δ, then

|pn(x)− pn(a)| < nδ(1 + |a|)n−1.

Our aim is to make this smaller than ε, and so simply choose

δ <
ε

n(1 + |a|)n−1
.

Together with δ < 1, we see that if

δ = min
(

1,
ε

n(1 + |a|)n−1
)
,

then
|x− a| < δ =⇒ |pn(x)− pn(a)| < ε.

(b) Show that f(x) =
√
x is continuous on (0,∞).

Solution: Let ε > 0, and |x− a| < δ for some δ > 0 to be chosen later. Clearly

|
√
x−
√
a| = |x− a|

|
√
x+
√
a|
<

δ

|
√
x+
√
a|
.

Now, a > 0, by choosing δ < a/2,

|x− a| < δ =⇒ x > a/2.

So √
x+
√
a > 3

√
a/2,

and

|
√
x−
√
a| < 2δ

3
√
a
.

So simply pick

δ = min
(a

2
,

3
√
a

2
ε
)
.

(c) Show that fn(x) = x1/n is continuous on (0,∞).

Solution: Again, we prove continuity at x = a. Let ε > 0. From the identity, we see that

x− a = (x1/n − a1/n)(x1−1/n + x1−2/na1/n · · ·+ a1−1/n)

Then

|fn(x)− fn(a)| = |x− a|
|x1−1/n + x1−2/na1/n · · ·+ a1−1/n|

.

Again as before, since a > 0, if δ < a/2, then x > a/2 and so

x1−1/n + x1−2/na1/n · · ·+ a1−1/n > na1−1/ncn,

where cn is the constant (independent of a)

cn = 21−1/n + 21−2/n + · · ·+ 1.
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And so if |x− a| < δ and δ < a/2 we have

|fn(x)− fn(a)| < δ

ncna1−1/n
.

So simply pick

δ = min
(a

2
, ncna

1−1/nε
)
.

Hint. For all parts the following identity might be useful.

an − bn = (a− b)(an−1 + an−2b+ · · ·+ abn−2 + bn−1).
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