Solutions to Assignment-1

In each of the following, only use (and indicate) theorems or axioms introduced in the lectures.

1. (a) Show that $\sqrt{12}$ is irrational.

Solution: If not, then $\sqrt{6} = p/q$ where p and q have no common factors. Squaring, $p^2 = 12q^2$. Since 3 divides the right-hand side, it ought to also divide the left hand side, and hence must divide p. So let p = 3m. Then we have $9m^2 = 12q^2$ or $3m^2 = 4q^2$, and so $3|4q^2$. But since 3 is a prime and does not divide 4, we must have that $3|q^2$ or 3|q. But then 3 is a common factor between p and q, a contradiction!.

Note. One cannot argue using divisibility with respect to 2 (try it!!) as in the proof of irrationality of $\sqrt{2}$.

(b) Now consider the set $E := \{ \alpha \in \mathbb{Q} \mid \alpha^2 < 12 \}$. Given any positive number $\beta \in \mathbb{Q}$ such that $\beta^2 < 12$, find an explicit rational number $\varepsilon > 0$ (depending of course on β), such that $(\beta + \varepsilon)^2 < 12$.

Solution: We need an $\varepsilon > 0$ such that $(\beta + \varepsilon)^2 < 12$. Note that

$$(\beta + \varepsilon)^2 = \beta^2 + 2\beta\varepsilon + \varepsilon^2.$$

Now, since $\beta^2 < 12$, clearly, $\beta < 4$. If we then pick $\varepsilon < 1$, since $\varepsilon^2 < \varepsilon$, we automatically have $(\beta + \varepsilon)^2 < \beta^2 + 9\varepsilon$. Now, if pick ε smaller than $(12 - \beta^2)/9$, we will have $(\beta + \varepsilon)^2 < 12$. So we can take

$$\varepsilon < \min\left(1, \frac{12 - \beta^2}{9}\right)$$

(c) Similarly, if $\beta^2 > 12$, and $\beta < 4$, find an explicit positive rational number ε such that $(\beta - \varepsilon)^2 > 12$ and yet $\beta - \varepsilon$ is an upper bound of E.

Solution: We argue as above, noting that

$$(\beta - \varepsilon)^2 = \beta^2 - 2\beta\varepsilon + \varepsilon^2 \ge \beta^2 - 8\varepsilon + \varepsilon^2 > \beta^2 - 8\varepsilon$$

since $\beta < 4$ and $\varepsilon^2 > 0$. Since we want this to be greater than 12, we simply choose

$$\varepsilon = \frac{\beta^2 - 12}{8}.$$

This solves the first part.

Claim. With ε as above, $\beta - \varepsilon$ is also an upper bound for *E*. Firstly, note that $\beta - \varepsilon > 0$. So if the claim is false, then there exists a positive $\alpha \in E$ such that $\alpha \geq \beta - \varepsilon$. Squaring both sides preserves the inequality since both numbers are positive, and we obtain

$$\alpha^2 \ge (\beta - \varepsilon)^2.$$

This is clearly a contradiction, since the left hand side $\alpha^2 < 12$, by the definition of E, while the right hand side by construction is bigger than 12.

(d) Hence show that E has no least upper bound in \mathbb{Q} .

Solution: Suppose $\beta = \sup E \in \mathbb{Q}$. There are three cases.

- $\beta^2 < 12$. Then by definition $\beta \in E$. By part(b), there exists an $\varepsilon > 0$ such that $\beta + \varepsilon \in E$, and so β is not an upper bound for E. A contradiction.
- $\beta^2 > 12$. By part(c), there exists an $\varepsilon > 0$ such that $\beta \varepsilon$ is also an upper bound for E, and so β which contradicts the fact that β is the *least* upper bound.
- $\beta^2 = 12$. By part(a), this is not possible for a rational number β .

So all three cases give contradictions, and hence E does not have a supremum in \mathbb{Q} .

2. Let $a, b \in \mathbb{R}$.

(a) Show that $|b| \leq a$ if and only if $-a \leq b \leq a$.

Solution: Every if and only if proof has two directions.

- \implies . So we assume that $|b| \leq a$. In particular this implies that $a \geq 0$. We proceed by contradiction. Suppose b > a. Then b > 0, and so |b| = b contradicting the assumption that $|b| \leq a$. Similarly, if b < -a, then b < 0 and so |b| = -b, and so $-b \leq a$, or $b \geq -a$ which is a contradiction.
- \Leftarrow . Now we assume that $-a \leq b \leq a$. If $b \geq 0$, then $|b| = b \leq a$. If b < 0, then |b| = -b. Since $b \geq -a$, $-b \leq a$. So again $|b| \leq a$.
- (b) Show that $||b| |a|| \le |b a|$.

Solution: By the regular triangle inequality, $|a| \le |a - b| + |b|$, and so $|b| - |a| \ge -|b - a|$. Again by triangle inequality, $|b| \le |b - a| + |a|$, and so $|b| - |a| \le |b - a|$. That is,

$$-|b-a| \le |b| - |a| \le |b-a|.$$

Then by part(a) above, $||b| - |a|| \le |b - a|$.

3. Let $A, B \subset \mathbb{R}$.

(a) If $\sup A < \sup B$, then show that there is some $b \in B$ which is an upper bound for A.

Solution: Since $\sup A < \sup B$, there exists a γ such that $\sup A < \gamma < \sup B$. But then $\alpha < \gamma$ for all $\alpha \in A$. On the other hand γ cannot be an upper bound for B, and so there exists $b \in B$ such that $\gamma \leq b$. Then this b is clearly an upper bound for A.

(b) Show, by providing an example, that this is not necessarily the case if $\sup A \leq \sup B$.

Solution: Let $A = \{ -\frac{1}{n} \mid n \in \mathbb{N} \}, \ B = [-1, 0).$ Then sup $A = \sup B = 0$, but no element of B is an upper bound for A.

4. Let a < b be real numbers, and consider the set $T = \mathbb{Q} \cap [a, b]$. Show that $\inf T = a$ and $\sup T = b$.

Solution: We show that $\sup T = b$. Clearly b is an upper bound for T. Suppose γ is another upper bound, and suppose $\gamma < b$. Then by the density of rationals, there exists a rational $r \in \mathbb{Q}$ such that $\gamma < r < b$. Then $r \in T$ and γ cannot be an upper bound. Contradiction!

5. (a) Let $a, b \in \mathbb{R}$ such that $a \leq b + \frac{1}{n}$ for all $n \in \mathbb{N}$. Show that $a \leq b$.

Solution: If not, then a > b or equivalently a-b > 0. Then by the corollary to the Archimedean property, there exists an integer n such that a - b > 1/n, contradicting the hypothesis that $a \le b + \frac{1}{n}$ for all n. Hence we must have that $a \le b$.

(b) Show that if a > 0, then there exists a natural number $n \in \mathbb{N}$ such that $\frac{1}{n} \leq a \leq n$.

Solution: By the Archimedean property, there exist natural numbers n_1 and n_2 such that

$$\frac{1}{n_1} < a \text{ and } a < n_2.$$

Now let $n = \max(n_1, n_2)$. Then $1/n \le 1/n_1$ and $n \ge n_2$, and so

$$\frac{1}{n} \le a \le n$$

(c) Let $a, b \in \mathbb{R}$ such that a < b. Use the denseness of \mathbb{Q} to show that there are infinitely many rationals between a and b.

Solution: By the density of \mathbb{Q} , there is at least one rational number in (a, b). Call this r_1 . Then again by density of rationals, there is at least one rational in (r_1, b) ; call this r_2 . Having picked r_1, r_2, \dots, r_n , let r_{n+1} be a rational number between (r_n, b) . So we have an infinite collection of rationals r_1, r_2, \dots between a and b.

6. Let A and B be non-empty subsets of \mathbb{R} , and let

$$A + B := \{a + b \mid a \in A, \ b \in B\}.$$

That is, A + B is the set of all sums a + b, where $a \in A$ and $b \in B$.

(a) Show that $\sup(A + B) = \sup A + \sup B$. Note. You need to separately consider the case when at least one of the two supremums on the right is ∞ .

Solution: Let $\sup A = \alpha$ and $\sup B = \beta$.

• Suppose $\alpha, \beta < \infty$. Clearly $\alpha + \beta$ is an upper bound for A + B, and so $\sup(A + B) \le \alpha + \beta$. Next, for any $\varepsilon > 0$, there exists an $a \in A$ and a $b \in B$ such that

$$a \ge \alpha - \frac{\varepsilon}{2}, \ b \ge \beta - \frac{\varepsilon}{2}.$$

So there exists $a + b \in A + B$ satisfying $a + b \ge \alpha + \beta - \varepsilon$. Taking supremum,

 $\sup(A+B) \ge \alpha + \beta - \varepsilon.$

Since this is true for all $\varepsilon > 0$, we must have $\sup(A+B) \ge \alpha + \beta$ and so $\sup(A+B) = \alpha + \beta$.

- Suppose $\alpha = \infty$. Then A is unbounded, and so must A + B.
- $\beta = \infty$. Same argument.

(b) $\inf(A+B) = \inf A + \inf B$.

Solution: Follows from the facts that $\inf E = -\sup(-E), -(A+B) = -A+(-B)$, and part(a) above.

- 7. For each sequence, find the limit, and use the definition of limits to prove that the sequence does indeed converge to the proposed limit. Note that this means, given an $\varepsilon > 0$, you need to write down an N for which the definition of convergence works. Try to make the dependence of N on ε as explicit as possible.
 - (a) $\lim_{n \to \infty} \frac{3n+1}{6n+5}.$

Solution: Discussion. (3n+1)/(6n+5) = (3+1/n)/6 + 5/n. As $n \to \infty$, clearly this should tend towards 3/6 or 1/2. To prove that this is the limit we need to estimate

$$\frac{3n+1}{6n+5} - \frac{1}{2} \Big| = \frac{3}{2(6n+5)}$$

Our aim should to be to make the right hand side smaller than a given $\varepsilon > 0$.

(b) $\lim_{n \to \infty} \left\lfloor \frac{12 + 4n}{3n} \right\rfloor$, where for any $x \in \mathbb{R}$, the floor function $\lfloor x \rfloor$ is the greatest integer smaller than or equal to x (for instance, $\lfloor \pi \rfloor = 3$, $\lfloor -2.3 \rfloor = -3$).

Solution: There exists an N such that for all n > N,

$$\frac{4}{n} < \frac{2}{3}.$$

Then for any n > N,

$$\left\lfloor \frac{12+4n}{3n} \right\rfloor = \left\lfloor \frac{4}{3} + \frac{4}{n} \right\rfloor = 1.$$

In particular, given any $\varepsilon > 0$ if n > N,

$$0 = \left| \left\lfloor \frac{12 + 4n}{3n} \right\rfloor - 1 \right| < \varepsilon,$$

and hence the limit exists and is 1.

- 8. Give an example of each of the following or state that such a request is impossible by referencing the correct theorem.
 - (a) Sequences $\{x_n\}$ and $\{y_n\}$ that both diverge, but $\{x_n + y_n\}$ converges.

Solution: $x_n = n, y_n = -n$.

(b) Sequence $\{x_n\}$ converges and $\{y_n\}$ diverges, but $\{x_n + y_n\}$ converges.

Solution: This cannot happen. If $x_n + y_n$ converge to A and x_n converges to B, then by the addition theorem for limits, $y_n = (x_n + y_n) - x_n$ converges to A - B.

(c) Two sequences $\{x_n\}$ and $\{y_n\}$ where $\{x_ny_n\}$ and $\{x_n\}$ converge, but $\{y_n\}$ diverges.

Solution: $x_n = 1/n$ and $y_n = (-1)^n$.

(d) Let $k \in \mathbb{N}$ be fixed. Then sequence $\{a_n\}_{n=1}^{\infty}$ converges but $\{a_{n+k}\}_{n=1}^{\infty}$ might not converge, or even if it converges, might not converge to the same limit.

Solution: Suppose $\lim_{n\to\infty} a_n = L$. Claim. If k is fixed, then $a_{n+k} \to L$ as $n \to \infty$. Proof. Since $a_n \to L$, given any $\varepsilon > 0$, there exists N such that n > N implies $|a_n - L| < \varepsilon$. But then $n > N \implies |a_{n+k} - L| < \varepsilon$, since n + k > N.

- 9. Let $\{x_n\}$ and $\{y_n\}$ be two sequences, and let $\{z_n\}$ by the "shuffled" sequence $\{x_1, y_1, x_2, y_2, \cdots\}$.
 - (a) Find a general formula for z_n .

Solution:

$$z_n = \begin{cases} x_m, \ n = 2m - 1 \\ y_m, \ n = 2m. \end{cases}$$

(b) Show that $\{z_n\}$ converges if and only if **both** $\{x_n\}$ and $\{y_n\}$ converge to the same value.

Solution:

• \implies . Suppose z_n converges to L. Let $\varepsilon > 0$. Then there exists an N such that for all n > N, $|z_n - L| < \varepsilon$.

If n = 2m - 1 or n = 2m, then n > N implies that m > (N + 1)/2. Then from part(a), for all m > (N + 1)/2,

$$|x_m - L| < \varepsilon, |y_m - L| < \varepsilon,$$

and so

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = L.$$

• \Leftarrow Suppose $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = L$. Let $\varepsilon > 0$. Then there exists an N_1 such that for all $m > N_1$, $|x_m - L| < \varepsilon$. Similarly, there exists an N_2 such that for all $m > N_2$, $|y_m - L| < \varepsilon$. Let $N = \max(2N_1 - 1, 2N_2).$

10. Let $a_1 = 1$ and

$$a_{n+1} = \frac{1}{3}(a_n + 1)$$

for n > 1.

(a) Find a_2, a_3 and a_4 .

Solution: $a_2 = 2/3$, $a_3 = 5/9$, $a_4 = 14/27$.

(b) Use induction to show that $a_n > 1/2$ for all n.

Solution: For the base case, n = 1, clearly $a_1 = 1 > 1/2$. Suppose $a_n > 1/2$. Then

$$a_{n+1} = \frac{a_n + 1}{3} > \frac{3/2}{3} = \frac{1}{2}.$$

(c) Show that $\{a_n\}$ is a convergent sequence and compute it's limit.

Solution: From part(a) it seems that the sequence is decreasing. Let us try to prove that. Since $a_n > 1/2$, $1 < 2a_n$ and so, we have

$$a_{n+1} = \frac{a_n + 1}{3} < \frac{a_n + 2a_n}{3} = a_n.$$

So the sequence is decreasing and bounded below, hence by the monotone convergence theorem, the sequence converges. Suppose $\lim_{n\to\infty} a_n = L$, then taking limits as $n \to \infty$ for the recurrence,

$$L = \frac{L+1}{3},$$

or L = 1/2.

11. (a) Show that the sequence

$$\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots$$

converges, and find it's limit.

Solution: Let $a_1 = \sqrt{2}$ and

$$a_{n+1} = \sqrt{2 + a_n}$$

Then $\{a_n\}$ is precisely the sequence we are considering.

• We first claim that $0 < a_n < 2$ for all n. We prove this by induction. For n = 1, $a_1 = \sqrt{2} \approx 1.414 < 2$ and is positive. Suppose $a_n < 2$, then

$$a_{n+1} = \sqrt{2+a_n} < \sqrt{2+2} = 2,$$

and so $a_{n+1} < 2$. Positivity is also clear since we are taking the positive square root. This completes the inductive step and hence the proof.

• Next, we claim that a_n is an increasing sequence. To see this, note that since $a_n < 2$, we have $a_n + 2 > 2a_n$, and so

$$a_{n+1} = \sqrt{2+a_n} > \sqrt{2a_n} > \sqrt{a_n^2} = a_n$$

So $a_{n+1} > a_n$ for all n and the sequence is increasing.

Then by the theorem on convergence of monotonic sequences, $\{a_n\}$ converges. Suppse $\lim_{n \to \infty} a_n = L$. Then taking limits as $n \to \infty$ on both sides of $a_{n+1} = \sqrt{2 + a_n}$, we see that

$$L = \sqrt{2 + L},$$

or L = 1 or 2. But since $\{a_n\}$ is always increasing, and $a_1 > 1$, L has to be 2. So

$$\lim_{n \to \infty} a_n = 2$$

(b) Does the sequence $\sqrt{2}$, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2}\sqrt{2}}$ converge? Give a complete proof. If it does converge, also find the limit.

Solution: The sequence is now given by the recurrence, $x_1 = \sqrt{2}$, and $x_{n+1} = \sqrt{2x_n}$.

• We again claim that $x_n < 2$ for all n. Again, we proceed by induction. Clearly $x_1 < 2$ which is the base case. For the inductive step, suppose $x_n < 2$. Then

$$x_{n+1} = \sqrt{2x_n} < \sqrt{2 \cdot 2} = 2.$$

• Next we claim that x_n is increasing. This follows from

$$x_{n+1} = \sqrt{2x_n} > \sqrt{x_n^2} = x_n.$$

By the theorem on convergence of monotonic sequences, the sequence must converge. We compute the limit as before

$$L = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sqrt{2x_n} = \sqrt{2L},$$

and so L = 2.

- 12. (Arithmetic and geometric means)
 - (a) Show that

$$\frac{x+y}{2} \ge \sqrt{xy}$$

The quantity on the left of center is the arithmetic mean, and the quantity on the right of center is the geometric mean.

Solution: We have the following sequence of inequalities

$$\frac{x+y}{2} \ge \sqrt{xy}$$
$$\iff x+y-2\sqrt{xy} \ge 0$$
$$\iff (\sqrt{x}-\sqrt{y})^2 \ge 0.$$

Since the final inequality is clearly true, and since all implications are reversible (note the \iff), the first inequality also has to be true.

(b) Now, let $0 \le x_1 \le y_1$, and define recursively,

$$x_{n+1} = \sqrt{x_n y_n}, \ y_{n+1} = \frac{x_n + y_n}{2}.$$

Show that both $\lim_{n\to\infty} x_n$ and $\lim_{n\to\infty} y_n$ exist and are equal.

Solution:

• We first claim that $x_n \leq x_{n+1} \leq y_{n+1} \leq y_n$ for all n. To see this, note first that $x_n \leq y_n$ for all n by part(a), since x_n is the geometric mean and a y_n is the arithmetic mean. Then $x_{n+1} = \sqrt{x_n y_n} \geq \sqrt{x_n^2} = x_n$. Similarly we can show that $y_n \geq y_{n+1}$.

• From the above claim it follows that $x_1 \leq x_n \leq y_n \leq y_1$ and that $\{x_n\}$ is an increasing sequence and $\{y_n\}$ is a decreasing sequence. Hence by the theorem on monotone convergence, both sequences converge. Let

$$\lim_{n \to \infty} x_n = X, \quad \lim_{n \to \infty} y_n = Y,$$

Then

$$X = \sqrt{XY}$$
 and $Y = \frac{X+Y}{2}$.

From the second equation, it follows that X = Y.