
Solutions to Assignment-1

In each of the following, only use (and indicate) theorems or axioms introduced in the lectures.

1. (a) Show that
√

12 is irrational.

Solution: If not, then
√

6 = p/q where p and q have no common factors. Squaring, p2 = 12q2.
Since 3 divides the right-hand side, it ought to also divide the left hand side, and hence must
divide p. So let p = 3m. Then we have 9m2 = 12q2 or 3m2 = 4q2, and so 3|4q2. But since 3 is
a prime and does not divide 4, we must have that 3|q2 or 3|q. But then 3 is a common factor
between p and q, a contradiction!.

Note. One cannot argue using divisibility with respect to 2 (try it!!) as in the proof of
irrationality of

√
2.

(b) Now consider the set E := {α ∈ Q | α2 < 12}. Given any positive number β ∈ Q such that β2 < 12,
find an explicit rational number ε > 0 (depending of course on β), such that (β + ε)2 < 12.

Solution: We need an ε > 0 such that (β + ε)2 < 12. Note that

(β + ε)2 = β2 + 2βε+ ε2.

Now, since β2 < 12, clearly, β < 4. If we then pick ε < 1, since ε2 < ε, we automatically have
(β + ε)2 < β2 + 9ε. Now, if pick ε smaller than (12− β2)/9, we will have (β + ε)2 < 12. So we
can take

ε < min
(

1,
12− β2

9

)
.

(c) Similarly, if β2 > 12, and β < 4, find an explicit positive rational number ε such that (β− ε)2 > 12
and yet β − ε is an upper bound of E.

Solution: We argue as above, noting that

(β − ε)2 = β2 − 2βε+ ε2 ≥ β2 − 8ε+ ε2 > β2 − 8ε,

since β < 4 and ε2 > 0. Since we want this to be greater than 12, we simply choose

ε =
β2 − 12

8
.

This solves the first part.

Claim. With ε as above, β − ε is also an upper bound for E. Firstly, note that β − ε > 0.
So if the claim is false, then there exists a positive α ∈ E such that α ≥ β − ε. Squaring both
sides preserves the inequality since both numbers are positive, and we obtain

α2 ≥ (β − ε)2.

This is clearly a contradiction, since the left hand side α2 < 12, by the definition of E, while
the right hand side by construction is bigger than 12.
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(d) Hence show that E has no least upper bound in Q.

Solution: Suppose β = supE ∈ Q. There are three cases.

• β2 < 12. Then by definition β ∈ E. By part(b), there exists an ε > 0 such that β+ε ∈ E,
and so β is not an upper bound for E. A contradiction.

• β2 > 12. By part(c), there exists an ε > 0 such that β − ε is also an upper bound for E,
and so β which contradicts the fact that β is the least upper bound.

• β2 = 12. By part(a), this is not possible for a rational number β.

So all three cases give contradictions, and hence E does not have a supremum in Q.

2. Let a, b ∈ R.

(a) Show that |b| ≤ a if and only if −a ≤ b ≤ a.

Solution: Every if and only if proof has two directions.

• =⇒ . So we assume that |b| ≤ a. In particular this implies that a ≥ 0. We proceed by
contradiction. Suppose b > a. Then b > 0, and so |b| = b contradicting the assumption
that |b| ≤ a. Similarly, if b < −a, then b < 0 and so |b| = −b, and so −b ≤ a, or b ≥ −a
which is a contradiction.

• ⇐= . Now we assume that −a ≤ b ≤ a. If b ≥ 0, then |b| = b ≤ a. If b < 0, then
|b| = −b. Since b ≥ −a, −b ≤ a. So again |b| ≤ a.

(b) Show that ||b| − |a|| ≤ |b− a|.

Solution: By the regular triangle inequality, |a| ≤ |a − b| + |b|, and so |b| − |a| ≥ −|b − a|.
Again by triangle inequality, |b| ≤ |b− a|+ |a|, and so |b| − |a| ≤ |b− a|. That is,

−|b− a| ≤ |b| − |a| ≤ |b− a|.

Then by part(a) above, ||b| − |a|| ≤ |b− a|.

3. Let A,B ⊂ R.

(a) If supA < supB, then show that there is some b ∈ B which is an upper bound for A.

Solution: Since supA < supB, there exists a γ such that supA < γ < supB. But then α < γ
for all α ∈ A. On the other hand γ cannot be an upper bound for B, and so there exists b ∈ B
such that γ ≤ b. Then this b is clearly an upper bound for A.

(b) Show, by providing an example, that this is not necessarily the case if supA ≤ supB.

Solution: Let

A = {− 1

n
| n ∈ N}, B = [−1, 0).

Then supA = supB = 0, but no element of B is an upper bound for A.

4. Let a < b be real numbers, and consider the set T = Q ∩ [a, b]. Show that inf T = a and supT = b.
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Solution: We show that supT = b. Clearly b is an upper bound for T . Suppose γ is another upper
bound, and suppose γ < b. Then by the density of rationals, there exists a rational r ∈ Q such that
γ < r < b. Then r ∈ T and γ cannot be an upper bound. Contradiction!

5. (a) Let a, b ∈ R such that a ≤ b+ 1
n for all n ∈ N. Show that a ≤ b.

Solution: If not, then a > b or equivalently a−b > 0. Then by the corollary to the Archimedean
property, there exists an integer n such that a − b > 1/n, contradicting the hypothesis that
a ≤ b+ 1

n for all n. Hence we must have that a ≤ b.

(b) Show that if a > 0, then there exists a natural number n ∈ N such that 1
n ≤ a ≤ n.

Solution: By the Archimedean property, there exist natural numbers n1 and n2 such that

1

n1
< a and a < n2.

Now let n = max(n1, n2). Then 1/n ≤ 1/n1 and n ≥ n2, and so

1

n
≤ a ≤ n.

(c) Let a, b ∈ R such that a < b. Use the denseness of Q to show that there are infinitely many rationals
between a and b.

Solution: By the density of Q, there is at least one rational number in (a, b). Call this r1.
Then again by density of rationals, there is at least one rational in (r1, b); call this r2. Having
picked r1, r2, · · · , rn, let rn+1 be a rational number between (rn, b). So we have an infinite
collection of rationals r1, r2, · · · between a and b.

6. Let A and B be non-empty subsets of R, and let

A+B := {a+ b | a ∈ A, b ∈ B}.

That is, A+B is the set of all sums a+ b, where a ∈ A and b ∈ B.

(a) Show that sup(A+ B) = supA+ supB. Note. You need to separately consider the case when at
least one of the two supremums on the right is ∞.

Solution: Let supA = α and supB = β.

• Suppose α, β <∞. Clearly α+β is an upper bound for A+B, and so sup(A+B) ≤ α+β.
Next, for any ε > 0, there exists an a ∈ A and a b ∈ B such that

a ≥ α− ε

2
, b ≥ β − ε

2
.

So there exists a+ b ∈ A+B satisfying a+ b ≥ α+ β − ε. Taking supremum,

sup(A+B) ≥ α+ β − ε.

Since this is true for all ε > 0, we must have sup(A+B) ≥ α+β and so sup(A+B) = α+β.

• Suppose α =∞. Then A is unbounded, and so must A+B.

• β =∞. Same argument.
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(b) inf(A+B) = inf A+ inf B.

Solution: Follows from the facts that inf E = − sup(−E), −(A+B) = −A+(−B), and part(a)
above.

7. For each sequence, find the limit, and use the definition of limits to prove that the sequence does indeed
converge to the proposed limit. Note that this means, given an ε > 0, you need to write down an N for
which the definition of convergence works. Try to make the dependence of N on ε as explicit as possible.

(a) lim
n→∞

3n+ 1

6n+ 5
.

Solution: Discussion. (3n+ 1)/(6n+ 5) = (3 + 1/n)/6 + 5/n. As n→∞, clearly this should
tend towards 3/6 or 1/2. To prove that this is the limit we need to estimate∣∣∣3n+ 1

6n+ 5
− 1

2

∣∣∣ =
3

2(6n+ 5)
.

Our aim should to be to make the right hand side smaller than a given ε > 0.

(b) lim
n→∞

⌊12 + 4n

3n

⌋
, where for any x ∈ R, the floor function bxc is the greatest integer smaller than or

equal to x (for instance, bπc = 3, b−2.3c = −3).

Solution: There exists an N such that for all n > N ,

4

n
<

2

3
.

Then for any n > N , ⌊12 + 4n

3n

⌋
=
⌊4

3
+

4

n

⌋
= 1.

In particular, given any ε > 0 if n > N ,

0 =
∣∣∣⌊12 + 4n

3n

⌋
− 1
∣∣∣ < ε,

and hence the limit exists and is 1.

8. Give an example of each of the following or state that such a request is impossible by referencing the
correct theorem.

(a) Sequences {xn} and {yn} that both diverge, but {xn + yn} converges.

Solution: xn = n, yn = −n.

(b) Sequence {xn} converges and {yn} diverges, but {xn + yn} converges.

Solution: This cannot happen. If xn + yn converge to A and xn converges to B, then by the
addition theorem for limits, yn = (xn + yn)− xn converges to A−B.

(c) Two sequences {xn} and {yn} where {xnyn} and {xn} converge, but {yn} diverges.

Solution: xn = 1/n and yn = (−1)n.
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(d) Let k ∈ N be fixed. Then sequence {an}∞n=1 converges but {an+k}∞n=1 might not converge, or even
if it converges, might not converge to the same limit.

Solution: Suppose lim
n→∞

an = L.

Claim. If k is fixed, then an+k → L as n→∞.

Proof. Since an → L, given any ε > 0, there exists N such that n > N implies |an − L| < ε.
But then

n > N =⇒ |an+k − L| < ε,

since n+ k > N .

9. Let {xn} and {yn} be two sequences, and let {zn} by the “shuffled” sequence {x1, y1, x2, y2, · · · }.
(a) Find a general formula for zn.

Solution:

zn =

{
xm, n = 2m− 1

ym, n = 2m.

(b) Show that {zn} converges if and only if both {xn} and {yn} converge to the same value.

Solution:

• =⇒ . Suppose zn converges to L. Let ε > 0. Then there exists an N such that for all
n > N ,

|zn − L| < ε.

If n = 2m− 1 or n = 2m, then n > N implies that m > (N + 1)/2. Then from part(a),
for all m > (N + 1)/2,

|xm − L| < ε, |ym − L| < ε,

and so
lim
n→

xn = lim
n→∞

yn = L.

• ⇐= Suppose limn→ xn = limn→∞ yn = L. Let ε > 0. Then there exists an N1 such that
for all m > N1, |xm − L| < ε. Similarly, there exists an N2 such that for all m > N2,
|ym − L| < ε. Let

N = max(2N1 − 1, 2N2).

10. Let a1 = 1 and

an+1 =
1

3
(an + 1)

for n > 1.

(a) Find a2, a3 and a4.

Solution: a2 = 2/3, a3 = 5/9, a4 = 14/27.

(b) Use induction to show that an > 1/2 for all n.
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Solution: For the base case, n = 1, clearly a1 = 1 > 1/2. Suppose an > 1/2. Then

an+1 =
an + 1

3
>

3/2

3
=

1

2
.

(c) Show that {an} is a convergent sequence and compute it’s limit.

Solution: From part(a) it seems that the sequence is decreasing. Let us try to prove that.
Since an > 1/2, 1 < 2an and so, we have

an+1 =
an + 1

3
<
an + 2an

3
= an.

So the sequence is decreasing and bounded below, hence by the monotone convergence theorem,
the sequence converges. Suppose lim

n→∞
an = L, then taking limits as n→∞ for the recurrence,

L =
L+ 1

3
,

or L = 1/2.

11. (a) Show that the sequence

√
2,

√
2 +
√

2,

√
2 +

√
2 +
√

2, · · ·

converges, and find it’s limit.

Solution: Let a1 =
√

2 and
an+1 =

√
2 + an.

Then {an} is precisely the sequence we are considering.

• We first claim that 0 < an < 2 for all n. We prove this by induction. For n = 1,
a1 =

√
2 ≈ 1.414 < 2 and is positive. Suppose an < 2, then

an+1 =
√

2 + an <
√

2 + 2 = 2,

and so an+1 < 2. Positivity is also clear since we are taking the positive square root. This
completes the inductive step and hence the proof.

• Next, we claim that an is an increasing sequence. To see this, note that since an < 2, we
have an + 2 > 2an, and so

an+1 =
√

2 + an >
√

2an >
√
a2n = an.

So an+1 > an for all n and the sequence is increasing.

Then by the theorem on convergence of monotonic sequences, {an} converges. Suppse lim
n→∞

an =

L. Then taking limits as n→∞ on both sides of an+1 =
√

2 + an, we see that

L =
√

2 + L,

or L = 1 or 2. But since {an} is always increasing, and a1 > 1, L has to be 2. So

lim
n→∞

an = 2.
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(b) Does the sequence
√

2,
√

2
√

2,

√
2
√

2
√

2 converge? Give a complete proof. If it does converge, also
find the limit.

Solution: The sequence is now given by the recurrence, x1 =
√

2, and xn+1 =
√

2xn.

• We again claim that xn < 2 for all n. Again, we proceed by induction. Clearly x1 < 2
which is the base case. For the inductive step, suppose xn < 2. Then

xn+1 =
√

2xn <
√

2 · 2 = 2.

• Next we claim that xn is increasing. This follows from

xn+1 =
√

2xn >
√
x2n = xn.

By the theorem on convergence of monotonic sequences, the sequence must converge. We
compute the limit as before

L = lim
n→

xn+1 = lim
n→∞

√
2xn =

√
2L,

and so L = 2.

12. (Arithmetic and geometric means)

(a) Show that
x+ y

2
≥ √xy.

The quantity on the left of center is the arithmetic mean, and the quantity on the right of center is
the geometric mean.

Solution: We have the following sequence of inequalities

x+ y

2
≥ √xy

⇐⇒ x+ y − 2
√
xy ≥ 0

⇐⇒ (
√
x−√y)2 ≥ 0.

Since the final inequality is clearly true, and since all implications are reversible (note the
⇐⇒ ), the first inequality also has to be true.

(b) Now, let 0 ≤ x1 ≤ y1, and define recursively,

xn+1 =
√
xnyn, yn+1 =

xn + yn
2

.

Show that both limn→∞ xn and limn→∞ yn exist and are equal.

Solution:

• We first claim that xn ≤ xn+1 ≤ yn+1 ≤ yn for all n. To see this, note first that xn ≤ yn
for all n by part(a), since xn is the geometric mean and a yn is the arithmetic mean.
Then xn+1 =

√
xnyn ≥

√
x2n = xn. Similarly we can show that yn ≥ yn+1.
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• From the above claim it follows that x1 ≤ xn ≤ yn ≤ y1 and that {xn} is an increas-
ing sequence and {yn} is a decreasing sequence. Hence by the theorem on monotone
convergence, both sequences converge. Let

lim
n→∞

xn = X, lim
n→∞

yn = Y,

Then

X =
√
XY and Y =

X + Y

2
.

From the second equation, it follows that X = Y .
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