
Solutions to Assignment-0
(not to be handed in)

1. (De Morgan’s laws) Let {Aα}α∈I be a collection of subsets of a larger set B. I is simply an indexing set,
that could be finite or infinite.

(a) Show that (
∪α∈I Aα

)c
= ∩α∈I Acα,

where for any subset A, Ac = B \A is the complement.

Solution: Discussion. The standard way of showing that two sets A and B are equal, i.e
A = B, is to show that A ⊆ B and B ⊆ A. To show A ⊆ B, the usual method is to start with
an arbitrary element x ∈ A, and to show that in fact x ∈ B.

Formal proof. We show the two inclusions.

• Let x ∈
(
∪α∈I Aα

)c
. Then x /∈ ∪α∈IAα, and by the definition of union, this means

that x /∈ Aα for all α ∈ I. That is, x ∈ Acα for all α ∈ I. But then by the definition of
intersection, this means that x ∈ ∩α∈I Acα. Since x was arbitrary, this shows that(

∪α∈I Aα
)c
⊆ ∩α∈I Acα.

• For the reverse inclusion, let x ∈ ∩α∈I Acα be an arbitrary element. Then x ∈ Acα for all
α ∈ I, and so x /∈ Aα for all α ∈ I. Then by the definition of unions, this implies that
x /∈ ∪α∈IAα, and so

∩α∈I Acα ⊆
(
∪α∈I Aα

)c
.

(b) Show that (
∩α∈I Aα

)c
= ∪α∈I Acα.

Solution: The proof is almost exactly the same as above. Using the if and only if symbol
(⇐⇒ ) we can actually combine the two steps.

x ∈
(
∩α∈I Aα

)c
⇐⇒ x /∈ ∩α∈I Aα,

⇐⇒ x /∈ Aα for some α ∈ I,
⇐⇒ x ∈ Acα for some α ∈ I,
⇐⇒ x ∈ ∪α∈I Acα,

and hence (
∩α∈I Aα

)c
= ∪α∈I Acα.
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2. Decide which of the following statements are true and give a complete proof. For statements that are
false provide a counter example.

(a) If A1 ⊇ A2 · · · are all sets containing an infinite number of elements, then ∩∞n=1An is also an infinite
set.

Solution: No. In fact the intersection could even be empty. Let

An = N \ {1, 2, 3, · · · , n}.

Then A1 ⊃ A2 · · · and each set is infinite, but ∩∞n=1An is empty, since for any integer m,
m /∈ An for n > m, so cannot be in the common intersection.

(b) If A1 ⊇ A2 · · · are all finite non-empty sets of real numbers, then ∩∞n=1An is also finite and non-
empty.

Solution: This is true. Firstly, ∩∞n=1An ⊂ A1 and hence is finite since A1 is finite. To show
that the intersection is non-empty, we in fact prove the following stronger statement.

Claim. There exists an N ∈ N such that An = AN for all n ≥ N . That is, after a certain
point, all sets have to be the identical.

Proof. If not, then for all N ∈ N, there is an integer n > N such that An ( AN . The basic
idea is that if a set is a strict subset, it has strictly fewer elements. But since all sets are nested
inside A1, A1 is a finite set, and all sets are non-empty, this process cannot go on for ever.

More formally, suppose A1 has m elements. Then there is some n1 such that An1
( A1. Let

An1
have m1 elements. Then m1 < m. Now again, there is some n2 such that An2

( An1
,

and if An2
has m2 elements, then m2 < m1 < m. We can continue this process indefinitely,

to construct a sequence of subsets Ank
with number of elements mk such that mk < mk−1.

Because of the strict inequality, eventually mk = 0 for some k, contradicting the fact that all
subsets are non-empty.

3. Use induction to prove the following.

(a) 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6 .

Solution:

• Base Case. n = 1. Clearly both L.H.S and R.H.S are 1.

• Inductive step. Suppose the identity is true for some n. We want to prove it for n+ 1.

1 + 22 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 (use identity for n),

= (n+ 1)
[n(2n+ 1)

6
+ n+ 1

]
,

= (n+ 1)
[2n2 + 7n+ 6

6

]
=

(n+ 1)(n+ 2)(2n+ 3)

6

=
(n+ 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
,

and hence the identity also holds for n+ 1.
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(b) 13 + 23 + · · · + n3 =
[
n(n+1)

2

]2
. Note. This is rather beautiful, that the sum of first n cubes is

equal to the square of the sum of the first n numbers.

Solution:

• Base Case. n = 1, both sides are 1.

• Inductive step. Suppose identity is true for some n. Then,

13 + 23 + · · ·+ n3 + (n+ 1)3 =
[n(n+ 1)

2

]2
+ (n+ 1)3

= (n+ 1)2
[n2

4
+ n+ 1

]
= (n+ 1)2

n2 + 4n+ 4

4

=
(n+ 1)2(n+ 2)2

4

=
[ (n+ 1)((n+ 1) + 1)

2

]2
.

(c) 11n − 4n is always divisible by 7.

Solution:

• Base Case. n = 1. Then 11n − 4n = 7 which is clearly divisible by 7.

• Inductive step. Suppose the statement is true for n. Now, noting that 11 = 7 + 4,

11n+1 − 4n+1 = 11 · 11n · −4 · 4n

= 7 · 11n + 4(11n − 4n).

The first term on the right is clearly divisible by 7. The second term on the right has a
factor of 11n−4n which by inductive hypothesis is also divisible by 7, and so 11n+1−4n+1

is also divisble by 7, thereby completing the inductive step, and hence the entire proof.

(d) 1
12 + 1

22 + · · ·+ 1
n2 ≤ 2− 1

n .

Solution:

• Base Case. n = 1, This is trivial since 1 = 1.

• Inductive step. Suppose the inequality is prove for n. Then

1

12
+

1

22
+ · · ·+ 1

n2
+

1

(n+ 1)2
≤ 2− 1

n
+

1

(n+ 1)2

by the inductive hypothesis. We want the the terms on the right involving n to be smaller
than −1/(n+ 1). To this effect note that

1

n
− 1

n+ 1
=

1

n(n+ 1)
≥ 1

(n+ 1)2
,

and so

2− 1

n
+

1

(n+ 1)2
≤ 2− 1

n+ 1
,

completing the proof of the inductive step.
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4. Consider the inequality
1

12
+

1

22
+ · · ·+ 1

n2
≤ 2.

By part(d) above, this is clearly true. But now try to prove the inequality directly by induction. Why
does it not work?

Solution: Again the base case is trivial since 1 < 2. For the inductive step suppose for some n,

1

12
+

1

22
+ · · ·+ 1

n2
≤ 2

. Then for (n+ 1),

1

12
+

1

22
+ · · ·+ 1

n2
+

1

(n+ 1)2
≤ 2 +

1

(n+ 1)2
,

which is clearly not smaller than 2. So the inductive step cannot be completed. The problem is that
if one tries to prove a weaker statement using induction, in the inductive step, one has a weaker
statement to exploit, and hence the inductive step might fail.
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