## Solutions to Assignment-0

(not to be handed in)

1. (De Morgan's laws) Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a collection of subsets of a larger set $\mathcal{B} . I$ is simply an indexing set, that could be finite or infinite.
(a) Show that

$$
\left(\cup_{\alpha \in I} A_{\alpha}\right)^{c}=\cap_{\alpha \in I} A_{\alpha}^{c}
$$

where for any subset $A, A^{c}=\mathcal{B} \backslash A$ is the complement.
Solution: Discussion. The standard way of showing that two sets $A$ and $B$ are equal, i.e $A=B$, is to show that $A \subseteq B$ and $B \subseteq A$. To show $A \subseteq B$, the usual method is to start with an arbitrary element $x \in A$, and to show that in fact $x \in B$.
Formal proof. We show the two inclusions.

- Let $x \in\left(\cup_{\alpha \in I} A_{\alpha}\right)^{c}$. Then $x \notin \cup_{\alpha \in I} A_{\alpha}$, and by the definition of union, this means that $x \notin A_{\alpha}$ for all $\alpha \in I$. That is, $x \in A_{\alpha}^{c}$ for all $\alpha \in I$. But then by the definition of intersection, this means that $x \in \cap_{\alpha \in I} A_{\alpha}^{c}$. Since $x$ was arbitrary, this shows that

$$
\left(\cup_{\alpha \in I} A_{\alpha}\right)^{c} \subseteq \cap_{\alpha \in I} A_{\alpha}^{c}
$$

- For the reverse inclusion, let $x \in \cap_{\alpha \in I} A_{\alpha}^{c}$ be an arbitrary element. Then $x \in A_{\alpha}^{c}$ for all $\alpha \in I$, and so $x \notin A_{\alpha}$ for all $\alpha \in I$. Then by the definition of unions, this implies that $x \notin \cup_{\alpha \in I} A_{\alpha}$, and so

$$
\cap_{\alpha \in I} A_{\alpha}^{c} \subseteq\left(\cup_{\alpha \in I} A_{\alpha}\right)^{c}
$$

(b) Show that

$$
\left(\begin{array}{ll}
\cap_{\alpha \in I} & A_{\alpha}
\end{array}\right)^{c}=\cup_{\alpha \in I} A_{\alpha}^{c}
$$

Solution: The proof is almost exactly the same as above. Using the if and only if symbol $(\Longleftrightarrow)$ we can actually combine the two steps.

$$
\begin{aligned}
x \in\left(\begin{array}{ll}
\cap_{\alpha \in I} & A_{\alpha}
\end{array}\right)^{c} & \Longleftrightarrow x \notin \cap_{\alpha \in I} A_{\alpha}, \\
& \Longleftrightarrow x \notin A_{\alpha} \text { for some } \alpha \in I, \\
& \Longleftrightarrow x \in A_{\alpha}^{c} \text { for some } \alpha \in I, \\
& \Longleftrightarrow x \in \cup_{\alpha \in I} A_{\alpha}^{c},
\end{aligned}
$$

and hence

$$
\left(\begin{array}{ll}
\cap_{\alpha \in I} & A_{\alpha}
\end{array}\right)^{c}=\cup_{\alpha \in I} A_{\alpha}^{c}
$$

2. Decide which of the following statements are true and give a complete proof. For statements that are false provide a counter example.
(a) If $A_{1} \supseteq A_{2} \cdots$ are all sets containing an infinite number of elements, then $\cap_{n=1}^{\infty} A_{n}$ is also an infinite set.

Solution: No. In fact the intersection could even be empty. Let

$$
A_{n}=\mathbb{N} \backslash\{1,2,3, \cdots, n\}
$$

Then $A_{1} \supset A_{2} \cdots$ and each set is infinite, but $\cap_{n=1}^{\infty} A_{n}$ is empty, since for any integer $m$, $m \notin A_{n}$ for $n>m$, so cannot be in the common intersection.
(b) If $A_{1} \supseteq A_{2} \cdots$ are all finite non-empty sets of real numbers, then $\cap_{n=1}^{\infty} A_{n}$ is also finite and nonempty.

Solution: This is true. Firstly, $\cap_{n=1}^{\infty} A_{n} \subset A_{1}$ and hence is finite since $A_{1}$ is finite. To show that the intersection is non-empty, we in fact prove the following stronger statement.
Claim. There exists an $N \in \mathbb{N}$ such that $A_{n}=A_{N}$ for all $n \geq N$. That is, after a certain point, all sets have to be the identical.
Proof. If not, then for all $N \in \mathbb{N}$, there is an integer $n>N$ such that $A_{n} \subsetneq A_{N}$. The basic idea is that if a set is a strict subset, it has strictly fewer elements. But since all sets are nested inside $A_{1}, A_{1}$ is a finite set, and all sets are non-empty, this process cannot go on for ever.
More formally, suppose $A_{1}$ has $m$ elements. Then there is some $n_{1}$ such that $A_{n_{1}} \subsetneq A_{1}$. Let $A_{n_{1}}$ have $m_{1}$ elements. Then $m_{1}<m$. Now again, there is some $n_{2}$ such that $A_{n_{2}} \subsetneq A_{n_{1}}$, and if $A_{n_{2}}$ has $m_{2}$ elements, then $m_{2}<m_{1}<m$. We can continue this process indefinitely, to construct a sequence of subsets $A_{n_{k}}$ with number of elements $m_{k}$ such that $m_{k}<m_{k-1}$. Because of the strict inequality, eventually $m_{k}=0$ for some $k$, contradicting the fact that all subsets are non-empty.
3. Use induction to prove the following.
(a) $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.

## Solution:

- Base Case. $n=1$. Clearly both L.H.S and R.H.S are 1.
- Inductive step. Suppose the identity is true for some $n$. We want to prove it for $n+1$.

$$
\begin{aligned}
1+2^{2}+\cdots+n^{2}+(n+1)^{2} & \left.=\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \quad \text { (use identity for } n\right), \\
& =(n+1)\left[\frac{n(2 n+1)}{6}+n+1\right], \\
& =(n+1)\left[\frac{2 n^{2}+7 n+6}{6}\right] \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{(n+1)((n+1)+1)(2(n+1)+1)}{6},
\end{aligned}
$$

and hence the identity also holds for $n+1$.
(b) $1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$. Note. This is rather beautiful, that the sum of first $n$ cubes is equal to the square of the sum of the first $n$ numbers.

## Solution:

- Base Case. $n=1$, both sides are 1 .
- Inductive step. Suppose identity is true for some $n$. Then,

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+n^{3}+(n+1)^{3} & =\left[\frac{n(n+1)}{2}\right]^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{n^{2}}{4}+n+1\right] \\
& =(n+1)^{2} \frac{n^{2}+4 n+4}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& =\left[\frac{(n+1)((n+1)+1)}{2}\right]^{2}
\end{aligned}
$$

(c) $11^{n}-4^{n}$ is always divisible by 7 .

## Solution:

- Base Case. $n=1$. Then $11^{n}-4^{n}=7$ which is clearly divisible by 7 .
- Inductive step. Suppose the statement is true for $n$. Now, noting that $11=7+4$,

$$
\begin{aligned}
11^{n+1}-4^{n+1} & =11 \cdot 11^{n} \cdot-4 \cdot 4^{n} \\
& =7 \cdot 11^{n}+4\left(11^{n}-4^{n}\right)
\end{aligned}
$$

The first term on the right is clearly divisible by 7 . The second term on the right has a factor of $11^{n}-4^{n}$ which by inductive hypothesis is also divisible by 7 , and so $11^{n+1}-4^{n+1}$ is also divisble by 7 , thereby completing the inductive step, and hence the entire proof.
(d) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.

## Solution:

- Base Case. $n=1$, This is trivial since $1=1$.
- Inductive step. Suppose the inequality is prove for $n$. Then

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n}+\frac{1}{(n+1)^{2}}
$$

by the inductive hypothesis. We want the the terms on the right involving $n$ to be smaller than $-1 /(n+1)$. To this effect note that

$$
\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n(n+1)} \geq \frac{1}{(n+1)^{2}}
$$

and so

$$
2-\frac{1}{n}+\frac{1}{(n+1)^{2}} \leq 2-\frac{1}{n+1}
$$

completing the proof of the inductive step.
4. Consider the inequality

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2
$$

By part(d) above, this is clearly true. But now try to prove the inequality directly by induction. Why does it not work?

Solution: Again the base case is trivial since $1<2$. For the inductive step suppose for some $n$,

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2
$$

. Then for $(n+1)$,

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}}+\frac{1}{(n+1)^{2}} \leq 2+\frac{1}{(n+1)^{2}}
$$

which is clearly not smaller than 2 . So the inductive step cannot be completed. The problem is that if one tries to prove a weaker statement using induction, in the inductive step, one has a weaker statement to exploit, and hence the inductive step might fail.

