Solutions to Assignment-0 (not to be handed in)

- 1. (De Morgan's laws) Let $\{A_{\alpha}\}_{\alpha \in I}$ be a collection of subsets of a larger set \mathcal{B} . I is simply an indexing set, that could be finite or infinite.
 - (a) Show that

$$\left(\cup_{\alpha\in I} A_{\alpha}\right)^{c} = \cap_{\alpha\in I} A_{\alpha}^{c},$$

where for any subset A, $A^c = \mathcal{B} \setminus A$ is the complement.

Solution: Discussion. The standard way of showing that two sets A and B are equal, i.e A = B, is to show that $A \subseteq B$ and $B \subseteq A$. To show $A \subseteq B$, the usual method is to start with an arbitrary element $x \in A$, and to show that in fact $x \in B$. Formal proof. We show the two inclusions.

• Let $x \in \left(\bigcup_{\alpha \in I} A_{\alpha}\right)^{c}$. Then $x \notin \bigcup_{\alpha \in I} A_{\alpha}$, and by the definition of union, this means that $x \notin A_{\alpha}$ for all $\alpha \in I$. That is, $x \in A_{\alpha}^{c}$ for all $\alpha \in I$. But then by the definition of intersection, this means that $x \in \bigcap_{\alpha \in I} A_{\alpha}^{c}$. Since x was arbitrary, this shows that

$$\left(\bigcup_{\alpha\in I}A_{\alpha}\right)^{c}\subseteq\cap_{\alpha\in I}A_{\alpha}^{c}.$$

• For the reverse inclusion, let $x \in \bigcap_{\alpha \in I} A^c_{\alpha}$ be an arbitrary element. Then $x \in A^c_{\alpha}$ for all $\alpha \in I$, and so $x \notin A_{\alpha}$ for all $\alpha \in I$. Then by the definition of unions, this implies that $x \notin \bigcup_{\alpha \in I} A_{\alpha}$, and so

$$\bigcap_{\alpha \in I} A_{\alpha}^{c} \subseteq \Big(\cup_{\alpha \in I} A_{\alpha} \Big)^{c}.$$

(b) Show that

$$\left(\bigcap_{\alpha\in I} A_{\alpha}\right)^{c} = \bigcup_{\alpha\in I} A_{\alpha}^{c}$$

Solution: The proof is almost exactly the same as above. Using the if and only if symbol (\iff) we can actually combine the two steps.

$$x \in \left(\bigcap_{\alpha \in I} A_{\alpha} \right)^{c} \iff x \notin \bigcap_{\alpha \in I} A_{\alpha},$$
$$\iff x \notin A_{\alpha} \text{ for some } \alpha \in I,$$
$$\iff x \in A_{\alpha}^{c} \text{ for some } \alpha \in I,$$
$$\iff x \in \bigcup_{\alpha \in I} A_{\alpha}^{c},$$
$$\left(\bigcap_{\alpha \in I} A_{\alpha} \right)^{c} = \bigcup_{\alpha \in I} A_{\alpha}^{c}.$$

and hence

$$\left(\cap_{\alpha \in I} A_{\alpha} \right)^{\circ} = \bigcup_{\alpha \in I} A$$

- 2. Decide which of the following statements are true and give a complete proof. For statements that are false provide a counter example.
 - (a) If $A_1 \supseteq A_2 \cdots$ are all sets containing an infinite number of elements, then $\bigcap_{n=1}^{\infty} A_n$ is also an infinite set.

Solution: No. In fact the intersection could even be empty. Let

$$A_n = \mathbb{N} \setminus \{1, 2, 3, \cdots, n\}.$$

Then $A_1 \supset A_2 \cdots$ and each set is infinite, but $\bigcap_{n=1}^{\infty} A_n$ is empty, since for any integer m, $m \notin A_n$ for n > m, so cannot be in the common intersection.

(b) If $A_1 \supseteq A_2 \cdots$ are all finite non-empty sets of real numbers, then $\bigcap_{n=1}^{\infty} A_n$ is also finite and non-empty.

Solution: This is true. Firstly, $\bigcap_{n=1}^{\infty} A_n \subset A_1$ and hence is finite since A_1 is finite. To show that the intersection is non-empty, we in fact prove the following stronger statement.

Claim. There exists an $N \in \mathbb{N}$ such that $A_n = A_N$ for all $n \ge N$. That is, after a certain point, all sets have to be the identical.

Proof. If not, then for all $N \in \mathbb{N}$, there is an integer n > N such that $A_n \subsetneq A_N$. The basic idea is that if a set is a strict subset, it has strictly fewer elements. But since all sets are nested inside A_1 , A_1 is a finite set, and all sets are non-empty, this process cannot go on for ever.

More formally, suppose A_1 has m elements. Then there is some n_1 such that $A_{n_1} \subsetneq A_1$. Let A_{n_1} have m_1 elements. Then $m_1 < m$. Now again, there is some n_2 such that $A_{n_2} \subsetneq A_{n_1}$, and if A_{n_2} has m_2 elements, then $m_2 < m_1 < m$. We can continue this process indefinitely, to construct a sequence of subsets A_{n_k} with number of elements m_k such that $m_k < m_{k-1}$. Because of the strict inequality, eventually $m_k = 0$ for some k, contradicting the fact that all subsets are non-empty.

- 3. Use induction to prove the following.
 - (a) $1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Solution:

- Base Case. n = 1. Clearly both L.H.S and R.H.S are 1.
- Inductive step. Suppose the identity is true for some n. We want to prove it for n + 1.

$$1 + 2^{2} + \dots + n^{2} + (n+1)^{2} = \frac{n(n+1)(2n+1)}{6} + (n+1)^{2} \quad \text{(use identity for } n\text{)},$$
$$= (n+1) \left[\frac{n(2n+1)}{6} + n + 1\right],$$
$$= (n+1) \left[\frac{2n^{2} + 7n + 6}{6}\right]$$
$$= \frac{(n+1)(n+2)(2n+3)}{6}$$
$$= \frac{(n+1)((n+1)+1)(2(n+1)+1)}{6},$$

and hence the identity also holds for n + 1.

(b) $1^3 + 2^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$. Note. This is rather beautiful, that the sum of first *n* cubes is equal to the square of the sum of the first *n* numbers.

Solution:

- Base Case. n = 1, both sides are 1.
- Inductive step. Suppose identity is true for some n. Then,

$$1^{3} + 2^{3} + \dots + n^{3} + (n+1)^{3} = \left[\frac{n(n+1)}{2}\right]^{2} + (n+1)^{3}$$
$$= (n+1)^{2} \left[\frac{n^{2}}{4} + n + 1\right]$$
$$= (n+1)^{2} \frac{n^{2} + 4n + 4}{4}$$
$$= \frac{(n+1)^{2}(n+2)^{2}}{4}$$
$$= \left[\frac{(n+1)((n+1)+1)}{2}\right]^{2}.$$

(c) $11^n - 4^n$ is always divisible by 7.

Solution:

- Base Case. n = 1. Then $11^n 4^n = 7$ which is clearly divisible by 7.
- Inductive step. Suppose the statement is true for n. Now, noting that 11 = 7 + 4,

$$11^{n+1} - 4^{n+1} = 11 \cdot 11^n \cdot -4 \cdot 4^n$$
$$= 7 \cdot 11^n + 4(11^n - 4^n)$$

The first term on the right is clearly divisible by 7. The second term on the right has a factor of $11^n - 4^n$ which by inductive hypothesis is also divisible by 7, and so $11^{n+1} - 4^{n+1}$ is also divisible by 7, thereby completing the inductive step, and hence the entire proof.

(d) $\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}$.

Solution:

- Base Case. n = 1, This is trivial since 1 = 1.
- Inductive step. Suppose the inequality is prove for n. Then

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n} + \frac{1}{(n+1)^2}$$

by the inductive hypothesis. We want the the terms on the right involving n to be smaller than -1/(n+1). To this effect note that

$$\frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \ge \frac{1}{(n+1)^2}$$

and so

$$2 - \frac{1}{n} + \frac{1}{(n+1)^2} \le 2 - \frac{1}{n+1}$$

completing the proof of the inductive step.

4. Consider the inequality

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2.$$

By part(d) above, this is clearly true. But now try to prove the inequality directly by induction. Why does it not work?

Solution: Again the base case is trivial since 1 < 2. For the inductive step suppose for some n,

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \le 2$$

. Then for (n+1),

$$\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} + \frac{1}{(n+1)^2} \le 2 + \frac{1}{(n+1)^2},$$

which is clearly not smaller than 2. So the inductive step cannot be completed. The problem is that if one tries to prove a weaker statement using induction, in the inductive step, one has a weaker statement to exploit, and hence the inductive step might fail.