
MATH 104 : Mid-Term

16 July, 2018

Name:

• You have 100 minutes to answer the questions.

• Use of calculators or study materials including textbooks, notes etc. is not
permitted.

• Answer the questions in the spaces provided on the question sheets. If you
run out of room for an answer, continue on the back of the page.

• For questions with multiple parts, you can solve a part assuming the previous
parts and get full credit for that particular part.

Question Points Score

1 18

2 16

3 12

4 10

5 14

Total: 70
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1. (18 points) For each of the following, either give an example, or state that the request is
impossible. If a request is impossible, provide a brief but compelling argument. For any
example given, you do not need to prove that it has the required property.

Unsolicited advice. Think each of these through carefully. Even if an answer pops out
immediately, there is no harm in being careful.

(a) A function f that is discontinuous at some p, but limh→0[f(p+ h)− f(p− h)] = 0.

Solution: Let

f(x) =

{
0, x 6= 0

1, x = 0,

and take p = 0.

(b) An infinite bounded set S ⊂ R such that supS is not a limit point of S.

Solution: S = [0, 1] ∪ {2}. Then supS = 2, but 2 is an isolated point of the set.

(c) A continuous, non-constant function f : [a, b]→ R such that the range f([a, b]) consists of
only irrational numbers.

Solution: Impossible. By the intermediate value theorem, if f is non-constant, then
f([a, b]) is also an interval, and hence must contain rational numbers.
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(d) A continuous function f : [a, b]→ R such that f(t) > 0 for all t, but 1/f is unbounded on
[a, b].

Solution: Impossible. By the extremum value theorem, the minimum of f is attained.
That is, there is some p such that f(t) ≥ f(p) > 0 for some p ∈ [a, b]. Since both f(t)
and f(p) are positive, this implies that 1/f is bounded above by 1/f(p) and below by
zero.

(e) A sequence {an} with lim supn→∞ an = 1 such that an < 1 for all n, and an = 0 for an
infinite number of indices n.

Solution: Let

an =

{
1− 1

n , n is odd

0, n is even.

(f) A sequence {an}∞n=1 where 0 ≤ an ≤ 1/n for all n, but
∑∞

n=1(−1)n−1an diverges.

Solution: Let

an =

{
1

n+1 , n is odd

0, n is even.

Then the even partial terms satisfy

s2m =

2m∑
k=1

(−1)k−1ak

=
1

2

m∑
j=1

1

j

m→∞−−−−→∞.

So the subsequence {s2m} diverges, and hence the series cannot converge.
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2. (a) (6 points) Given an ε > 0, find a δ > 0 such that for all x ∈ (1− δ, 1 + δ),∣∣∣1
2
− x

1 + x2

∣∣∣ < ε.

Solution: We have∣∣∣1
2
− x

1 + x2

∣∣∣ =
|x− 1|2

2(1 + x2)
≤ |x− 1|2

2
.

So simply take δ =
√

2ε. Then |x− 1| < δ implies∣∣∣1
2
− x

1 + x2

∣∣∣ < ε.
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(b) (7 points) Let f(x) = |x|3. Show that f is differentiable on all of R, and that f ′(x) = 3x|x|.

Solution: Now that

f(x) =

{
x3, x ≥ 0

−x3, x < 0.

So when x 6= 0, f is clearly differentiable at x and moreover, f ′(x) = 3x2 if x > 0 and
−3x2 when x < 0. At zero, we see that the difference quotient is

ϕ(x) =
f(x)− f(0)

x− 0
=
|x|3

x
= x2

x→0−−−→ 0.

So f is differentiable at x = 0 and f ′(0) = 0. So

f ′(x) =

{
3x2, x ≥ 0

−3x2, x < 0,

or simply f ′(x) = 3x|x|.

(c) (3 points) Does f ′′(0) exist? If so, compute it’s value. If not, give a proper justification.

Solution: We once again compute the difference quotient.

ϕ(x) =
f ′(x)− f ′(0)

x
= 3|x| x→0−−−→ 0.

So f ′′ exists at x = 0 and f ′′(0) = 0.
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3. Let f : (−1, 1)→ R be defined by

f(x) =
1√

1− x
.

(a) (3 points) Write down the formulae for f ′(x), f ′′(x) and f (3)(x).

Solution: Note that f(x) = (1− x)−
1
2 . Using power rule and chain rule,

f ′(x) =
1

2
(1− x)−

3
2 , f ′(x) =

3

4
(1− x)−

5
2 , f ′(x) =

15

8
(1− x)−

7
2 .

(b) (6 points) Find a degree two polynomial p(x) = ax2 + bx + c, such that for all x ∈
[−1/2, 1/2],

|f(x)− p(x)| ≤ 5√
2
|x|3.

Solution: Let

p(x) = T2(0, x) = 1 +
1

2
x+

3

4
x2.

Then by Taylor’s theorem, for all x ∈ [−1/2, 1/2], there exists a c (depending on x)
between 0 and x such that

f(x)− p(x) =
f (3)(c)

6
x3 =

5

16
(1− c)−

7
2x3.

Since c ∈ [−1/2, 1/2], 1− c > 1/2 and so

|f(x)− p(x)| ≤ 5

16
2

7
2 |x|3 =

5√
2
|x|3.

(please turn over for additional space to answer this part)
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(c) (3 points) For the polynomial found in part (i) above, calculate

lim
x→0

1√
1−x − p(x)

x3
,

if it exists (no justification needed), or prove that the limit does not exist.

Solution: Using L’Hospital’s rule or Taylor’s series, one can check that the limit is
simply the coefficient of x3 in the Taylor series, namely

lim
x→0

1√
1−x − p(x)

x3
=

15

8× 3!
=

5

16
.
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4. (a) (5 points) Let α > 1. Prove that for all y > x > 1,

yα − xα

y − x
≥ αxα−1.

Solution: Let f(x) = xα. Then f ′(x) = αxα−1. By the mean value theorem, there
exists c ∈ [x, y] such that

yα − xα

y − x
= αcα−1 ≥ αxα−1,

since c ≥ x and α− 1 > 0.

(b) (5 points) Use the above part with α = 3/2, to show that f(x) = x
√
x is not uniformly

continuous on [1,∞).

Solution: From the above part, we get the inequality

y
√
y − x

√
x ≥ 3

2

√
x(y − x).

Consider the sequences,

xn = n2, yn = n2 +
1

2n
.

Then |yn − xn| < 1/n and yet

|f(yn)− f(xn)| = f(yn)− f(xn) ≥ 3

4
.

So we have found a contradiction to the definition of uniform continuity for ε = 3/4.
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5. This final problem is about an algorithm to compute square roots. Let x1 >
√

3 and define
x2, x3, · · · recursively by

xn+1 =
1

2

(
xn +

3

xn

)
(a) (2 points) Prove that xn >

√
3 for all n.

Solution: Using the recurrence,

x2n − 3 =
x2n−1 + 6 + 9

x2n−1

4
− 3 =

x2n−1 − 6 + 9
x2n−1

4
=

1

4

(
xn−1 −

3

xn−1

)2
≥ 0

Hence x2n ≥ 3. So either xn >
√

3 or xn < −
√

3. But by induction it is easy to see
that xn > 0 for all n, and so xn >

√
3.

(b) (3 points) Prove that {xn} is a decreasing sequence.

Solution: Since xn ≥
√

3,

xn+1 =
1

2

(
xn +

3

xn

)
≤ 1

2

(
xn +

x2n
xn

)
= xn.

(c) (3 points) Prove that {xn} is convergent (quote the relevant theorem), and that limn→∞ xn =√
3.

Solution: Convergence follows from the monotone convergence theorem and part(a)
and (b) above. Taking limits on both sides of the recurrence, if limn→∞ xn = L, then

L =
1

2

(
L+

3

L

)
,

which can be easily solved to give L = ±
√

3. Again, since
√
xn >

√
3 > 0 for all n,

this shows that L =
√

3.
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Now, let εn = xn −
√

3, that is, εn is the error in the approximation of
√

2 by xn.

(d) (3 points) Show that

εn+1 =
ε2n

2xn
<

ε2n
2
√

3
.

Solution:

εn+1 =
1

2

(
xn +

3

xn

)
−
√

3

=
x2n + 3− 2xn

√
3

2xn

=
(xn −

√
3)2

2xn
=

ε2n
2xn

<
ε2n

2
√

3
.

The final inequality follows from part(a) since xn >
√

3.

(e) (3 points) Hence show that if β = 2
√

3, then

εn+1 < β
(ε1
β

)2n
.

Solution: We prove this by induction.

• Base case n = 1. Then by part(d) above,

ε2 <
ε21

2
√

3
= β

(ε1
β

)2
.

• Inductive step. Now suppose the estimate is proved for 1, · · · , n− 1. Then

εn <
ε2n−1

2
√

3
(by part(d))

<
1

β

(
β
(ε1
β

)2n−1)2
(by the inductive hypothesis)

= β
(ε1
β

)2n
.

Remark. This shows that the algorithm is fantastically fast. For instance, if x1 = 2 then
already ε5 < 4 · 10−16, so that the answer is correct up to 14 decimal places by just the
fifth iteration of the algorithm!
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