Practice problems for the final

1. Show the following using just the definitions (and no theorems).
(a) The function

$$
f(x)=\left\{\begin{array}{l}
x^{2}, x \geq 0 \\
0, x<0
\end{array}\right.
$$

is differentiable on \mathbb{R}, while $f^{\prime}(x)$ is not differentiable at 0 .
(b) The function $f(x)=x^{3}+x$ is continuous but not uniformly continuous on \mathbb{R}.
(c) The sequence of functions

$$
f_{n}(x)=\frac{n x}{n+1}
$$

converges point wise on \mathbb{R}, uniformly on bounded intervals (a, b), but does NOT converge uniformly on \mathbb{R}.
2. Let $f:(0,1) \rightarrow \mathbb{R}$ be a differentiable function such that $\left|f^{\prime}(t)\right| \leq 1$ for all t. Show that the sequence $a_{n}=f(1 / n)$ converges.
3. Let

$$
f(x)= \begin{cases}x, & x \in \mathbb{Q} \\ 0, & \text { otherwise }\end{cases}
$$

(a) Compute the upper and lower integrals on $[0,1]$.
(b) Now do the same for the interval $[-1,1]$.
4. Suppose f is a continuous real valued function on $[0, \infty)$ which is differentiable on $(0, \infty)$ and satisfies

$$
f^{\prime}(t)>f(t)
$$

for all $t \in(0, \infty)$. If $f(0)=1$, show that $f(t)>e^{t}$ for all t.
5. For any $\vec{x}=\left(x_{1}, x_{2}\right)$ and $\vec{y}=\left(y_{1}, y_{2}\right)$ in \mathbb{R}^{2}, define

$$
d(\vec{x}, \vec{y})=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right) .
$$

(a) Show that $\left(\mathbb{R}^{2}, d\right)$ is a metric space.
(b) Show that

$$
\frac{|\vec{x}-\vec{y}|}{\sqrt{2}} \leq d(\vec{x}, \vec{y}) \leq|\vec{x}-\vec{y}| .
$$

(c) Hence, show that $\left(\mathbb{R}^{2}, d\right)$ is a complete metric space.
(d) Also show that a subset K is compact in $\left(\mathbb{R}^{2}, d\right)$ if and only if it is closed and bounded.

6 . Consider the rectangle $R \subset \mathbb{R}^{2}$ formed by the edges $x= \pm 2, y=0$ and $y=1$ (here we consider only the boundary rectangle, and not the interior). We can think of R as a metric space with the metric induced from \mathbb{R}^{2}.
(a) Describe the sets $B_{1}(\overrightarrow{0})$ and $B_{\leq 1}(\overrightarrow{0})$.
(b) Show that $\overline{B_{1}(\overrightarrow{0})} \neq B_{\leq 1}(\overrightarrow{0})$.
(c) On the other hand, show that for any metric space (X, d),

$$
\overline{B_{r}(p)} \subseteq B_{\leq r}(p)
$$

7. Let (X, d) be a metric space. As usual, denote by \bar{S} and $\operatorname{int}(S)$, the closure and interior of a subset S respectively. Let \mathcal{F} be an arbitrary collection of subsets.
(a) Show that

$$
\cup_{A \in \mathcal{F}} \operatorname{int}(A) \subseteq \operatorname{int}\left(\cup_{A \in \mathcal{F}} A\right)
$$

(b) Give an example of a metric space (X, d) and a finite collection of subsets \mathcal{F} for which equality does not hold.
(c) Show that

$$
\cup_{A \in \mathcal{F}} \bar{A} \subseteq \overline{\cup_{A \in \mathcal{F}} A}
$$

(d) Give an example of a metric space (X, d) and an infinite family of subsets \mathcal{F} for which equality does not hold above.
(e) Show that if \mathcal{F} is a finite collection of sets, then

$$
\cup_{A \in \mathcal{F}} \bar{A}=\overline{\cup_{A \in \mathcal{F}} A}
$$

8. A point $p \in X$ is called a fixed point of a map $f: X \rightarrow X$ if $f(p)=p$.
(a) If (X, d) is a compact metric space, and f satisfies

$$
d(f(x), f(y))<d(x, y)
$$

for $x \neq y$, show that f has a fixed point in X and that fixed point is unique. Hint. Consider the minimum of $d(x, f(x))$.
(b) Show that the statement is no longer true if X is merely assumed to be complete, by considering the following example - $f:(-\infty, \infty) \rightarrow \mathbb{R}$ given by

$$
f(t)=t+\frac{1}{1+e^{t}}
$$

Hint. Show that $0<f^{\prime}(t)<1$ for all t.
(c) If X is complete, $f: X \rightarrow X$, and

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

for some $\alpha<1$, then show that there is a unique fixed point in X. Hint. Let $x_{0} \in X$ be any point, and define $x_{n+1}=f\left(x_{n}\right)$., and show that if $m>n$,

$$
d\left(x_{m}, x_{n}\right) \leq \frac{\alpha^{n} d\left(x_{1}, x_{0}\right)}{1-\alpha}
$$

9. Let K be a compact subset of a metric space (X, d) and F a closed subset.
(a) Show that $K \cap F$ is a compact subset.
(b) If $K \cap F=\phi$, show that

$$
\inf _{x \in K, y \in F} d(x, y)>0
$$

(c) Providing an example, argue that if K is assumed to be only closed, then the infimum could be zero.
10. Let (X, d) be a metric space.
(a) If p_{a}, \cdots, p_{n} be a finite collection of points, show using only the definition that $X \backslash\left\{p_{1}, \cdots, p_{n}\right\}$ is an open set.
(b) GIve an example of a metric space and a countable collection of points $\left\{p_{k}\right\}$ such that $X \backslash\left\{p_{k}\right\}_{k=1}^{\infty}$ is dense, infinite but not open.
11. Define a sequence of functions on $[0,2]$ by

$$
f_{n}(x)=\sqrt{\frac{x^{2}+n}{x+n}}
$$

(a) Show that the sequence converges uniformly to some continuous function f on $[0,2]$.
(b) Compute

$$
\lim _{n \rightarrow \infty} \int_{0}^{2} f_{n}(t) d t
$$

and justify your answer.
12. The Riemann zeta function is defined by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}
$$

Clearly the function is well defined and finite on $(1, \infty)$.
(a) Show that the series converges uniformly on $[\alpha, \infty)$ for all $\alpha>1$.
(b) Show that $\zeta(s)$ is differentiable on $(1, \infty)$ with

$$
\zeta^{\prime}(s)=-\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{s}}
$$

