Practice problems for the final

- 1. Show the following using just the definitions (and no theorems).
 - (a) The function

$$f(x) = \begin{cases} x^2, \ x \ge 0\\ 0, \ x < 0, \end{cases}$$

is differentiable on \mathbb{R} , while f'(x) is not differentiable at 0.

- (b) The function $f(x) = x^3 + x$ is continuous but not uniformly continuous on \mathbb{R} .
- (c) The sequence of functions

$$f_n(x) = \frac{nx}{n+1}$$

converges point wise on \mathbb{R} , uniformly on bounded intervals (a, b), but does NOT converge uniformly on \mathbb{R} .

2. Let $f:(0,1) \to \mathbb{R}$ be a differentiable function such that $|f'(t)| \leq 1$ for all t. Show that the sequence $a_n = f(1/n)$ converges.

3. Let

$$f(x) = \begin{cases} x, \ x \in \mathbb{Q} \\ 0, \ \text{otherwise.} \end{cases}$$

- (a) Compute the upper and lower integrals on [0, 1].
- (b) Now do the same for the interval [-1, 1].
- 4. Suppose f is a continuous real valued function on $[0,\infty)$ which is differentiable on $(0,\infty)$ and satisfies

$$f'(t) > f(t)$$

for all $t \in (0, \infty)$. If f(0) = 1, show that $f(t) > e^t$ for all t.

5. For any $\vec{x} = (x_1, x_2)$ and $\vec{y} = (y_1, y_2)$ in \mathbb{R}^2 , define

$$d(\vec{x}, \vec{y}) = \max(|x_1 - y_1|, |x_2 - y_2|).$$

- (a) Show that (\mathbb{R}^2, d) is a metric space.
- (b) Show that

$$\frac{|\vec{x} - \vec{y}|}{\sqrt{2}} \le d(\vec{x}, \vec{y}) \le |\vec{x} - \vec{y}|.$$

- (c) Hence, show that (\mathbb{R}^2, d) is a complete metric space.
- (d) Also show that a subset K is compact in (\mathbb{R}^2, d) if and only if it is closed and bounded.
- 6. Consider the rectangle $R \subset \mathbb{R}^2$ formed by the edges $x = \pm 2$, y = 0 and y = 1 (here we consider only the boundary rectangle, and not the interior). We can think of R as a metric space with the metric induced from \mathbb{R}^2 .
 - (a) Describe the sets $B_1(\vec{0})$ and $B_{\leq 1}(\vec{0})$.

(b) Show that $\overline{B_1(\vec{0})} \neq B_{\leq 1}(\vec{0})$.

(c) On the other hand, show that for any metric space (X, d),

$$B_r(p) \subseteq B_{\leq r}(p).$$

- 7. Let (X, d) be a metric space. As usual, denote by \overline{S} and int(S), the closure and interior of a subset S respectively. Let \mathcal{F} be an arbitrary collection of subsets.
 - (a) Show that

$$\bigcup_{A\in\mathcal{F}}\operatorname{int}(A)\subseteq\operatorname{int}(\bigcup_{A\in\mathcal{F}}A)$$

- (b) Give an example of a metric space (X, d) and a finite collection of subsets \mathcal{F} for which equality does not hold.
- (c) Show that

$$\cup_{A\in\mathcal{F}}\overline{A}\subseteq\overline{\cup_{A\in\mathcal{F}}A}.$$

- (d) Give an example of a metric space (X, d) and an infinite family of subsets \mathcal{F} for which equality does not hold above.
- (e) Show that if \mathcal{F} is a *finite* collection of sets, then

$$\cup_{A\in\mathcal{F}}\overline{A}=\overline{\cup_{A\in\mathcal{F}}A}.$$

- 8. A point $p \in X$ is called a *fixed point* of a map $f : X \to X$ if f(p) = p.
 - (a) If (X, d) is a compact metric space, and f satisfies

$$d(f(x), f(y)) < d(x, y),$$

for $x \neq y$, show that f has a fixed point in X and that fixed point is unique. **Hint.** Consider the minimum of d(x, f(x)).

(b) Show that the statement is no longer true if X is merely assumed to be complete, by considering the following example - $f: (-\infty, \infty) \to \mathbb{R}$ given by

$$f(t) = t + \frac{1}{1+e^t}$$

Hint. Show that 0 < f'(t) < 1 for all t.

(c) If X is complete, $f: X \to X$, and

$$d(f(x), f(y)) \le \alpha d(x, y)$$

for some $\alpha < 1$, then show that there is a unique fixed point in X. Hint. Let $x_0 \in X$ be any point, and define $x_{n+1} = f(x_n)$., and show that if m > n,

$$d(x_m, x_n) \le \frac{\alpha^n d(x_1, x_0)}{1 - \alpha}.$$

- 9. Let K be a compact subset of a metric space (X, d) and F a closed subset.
 - (a) Show that $K \cap F$ is a compact subset.
 - (b) If $K \cap F = \phi$, show that

$$\inf_{x \in K, \ y \in F} d(x, y) > 0.$$

- (c) Providing an example, argue that if K is assumed to be only closed, then the infimum could be zero.
- 10. Let (X, d) be a metric space.

- (a) If p_a, \dots, p_n be a finite collection of points, show using only the definition that $X \setminus \{p_1, \dots, p_n\}$ is an open set.
- (b) GIve an example of a metric space and a countable collection of points $\{p_k\}$ such that $X \setminus \{p_k\}_{k=1}^{\infty}$ is dense, infinite but not open.
- 11. Define a sequence of functions on [0, 2] by

$$f_n(x) = \sqrt{\frac{x^2 + n}{x + n}}.$$

- (a) Show that the sequence converges uniformly to some continuous function f on [0, 2].
- (b) Compute

$$\lim_{n \to \infty} \int_0^2 f_n(t) \, dt,$$

and justify your answer.

12. The Riemann zeta function is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Clearly the function is well defined and finite on $(1, \infty)$.

- (a) Show that the series converges uniformly on $[\alpha, \infty)$ for all $\alpha > 1$.
- (b) Show that $\zeta(s)$ is differentiable on $(1, \infty)$ with

$$\zeta'(s) = -\sum_{n=1}^{\infty} \frac{\ln(n)}{n^s}.$$