
Assignment-7
(Due 07/30)

Please hand in all the 8 questions in red

1. Consider the sequence of functions fn : [0, 1]→ R defined by

fn(x) =
x2

x2 + (1− nx)2
.

(a) Show that the sequence of functions converges pointwise as n→∞, and compute the limit function
f(x).

(b) Show that the sequence is not equicontinuous on [0, 1].

(c) Which theorem in the notes implies that fn does not converge uniformly to f on [0, 1]?

(d) Show that fn
u.c−−→ f on [a, 1] for all a ∈ (0, 1).

2. Let F ⊂ R[0, 1] be the set of all Riemann integrable functions on [0, 1] such that |f(t)| ≤ M for some
fixed M . For any f ∈ F , define I[f ] : [0, 1]→ R by

I[f ](x) =

∫ √
x

0

f(t) dt.

(a) Show that the family {I[f ] | f ∈ F} is equicontinuous.

(b) Show that given any sequence of functions {fn} in F , there exists a sub-sequence {fnk
} such that

I[fnk
] converges uniformly on [0, 1].

3. Consider the sequence of functions fn : [0, 2]→ R,

fn(t) =
tn

1 + tn
,

and let Fn : [0, 2]→ R be the anti-derivatives.

(a) Show that fn(t) converges point-wise on [0, 2]. What is the limit function?

(b) Argue, by simply looking at the limit function above, that no subsequence converges uniformly on
[0, 2].

(c) Show that for all x, y ∈ [0, 2],
|Fn(x)− Fn(y)| ≤ |x− y|.

(d) Show that there is a subsequence Fn that converges uniformly on [0.2].

4. Let C0[0, 1] denote the set of all continuous real valued functions on [0, 1]. For f, g ∈ C0[0, 1], define

d(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

(a) Show that d defines a metric on C0[0, 1].

(b) Show that fn → f in this metric, if and only if fn → f uniformly on [0, 1].
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(c) Show that (C0[0, 1], d) is a complete metric space, that is every Cauchy sequence is convergent.
Note. A sequence {xn} in a metric space (X, d) is said to be Cauchy ∀ε > 0, there exists N such
that for all n,m > N , d(xn, xm) < ε. We will talk about completeness in more detail in class on
Monday, but this is enough to solve the problem.

5. Let (X, d) be a metric space. The boundary ∂E and frontier dE of a set E ⊂ X are defined respectively
as

∂E = E \ int(E),

dE = E \ E.

where E is the closure of the set E and int(E) is the interior. Consider the following subset of R2,

E = {(x, y) | 0 < x2 + y2 < 1} ∪ {(x, 0) | 1 ≤ x ≤ 2}.

(a) Draw a neat and labelled diagram in the x-y plane indicating the subset E. Open sets can be
shown with dotted lines.

(b) Write down the sets E, int(E), ∂E and dE.

6. If A and B denote arbitrary subsets of a metric space (X, d), prove the following properties.

(a) int(A) = X −X −A.

(b) If int(A) = int(B) = φ, and A is closed, then int(A ∪ B) = φ. If A is not necessarily closed, given
an example where int(A ∪B) = X.

(c) A ∩B ⊆ A ∩B. Given an example of strict inclusion.

Here int(A) denotes the interior of A and A as usual denotes the closure.

7. Given A ⊂ (X, d), let L(A) be the set of limit points of A.

(a) Show that L(A) is closed.

(b) Show that if p is a limit point of A∪L(A), then p is also a limit point of A. Is it necessarily a limit
point of L(A)?

8. Let (X, dX) and (Y, dY ) be metric spaces. Suppose f : X → Y is a continuous

(a) For any y ∈ Y , show that Zy = {x ∈ X | f(x) = y} is a closed set.

(b) Suppose now Y = R with the standard Euclidean metric | · |. If for some p ∈ X, f(p) > 0, then
show that there is some δ > 0 such that for all x ∈ Bδ(p), f(x) > 0.

9. Let (X, dX) and (Y, dY ) be metric spaces and let f : X → Y be a continuous function. Prove that

f(E) ⊂ f(E)

for any subset E ⊂ X. Show by example that the inclusion can be strict.

10. Show, using only the definition of compactness, that the set

K = { 1

n
| n ∈ N}

is NOT compact, while the set K ∪ {0} is compact.

11. Let Q be the set of rationals with the usual distance function d(r, s) = |r − s|. Let E be the set of
rationals r satisfying 2 < r2 < 3. Show that E is closed and bounded but not compact. This shows that
the Hein-Borel or Bolzano-Weierstrass theorem is not true in a general metric space.
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12. Recall that C0[0, 1] denotes the set of continuous functions on [0, 1]. We endow it with the usual metric

d(f, g) = sup
t∈[0,1]

|f(t)− g(t)|.

Define a function T : C0[0, 1]→ C0[0, 1] by

T [f ](x) =

∫ x

0

f(t) dt.

Let K ⊂ C0[0, 1] be a bounded set.

(a) Show that T is a continuous function. Is it injective? Hint. To show continuity, it is enough to

show (Why?) that if fn
u.c−−→ f , then T [fn]

u.c−−→ T [f ].

(b) Show that the set T (K) is a compact subset of C0[0, 1]. Hint. Use the Version-2 of Ascoli-Arzela.

13. This exercise shows that even in a complete metric, a closed and bounded set need not be compact. Let

l∞(R); = {{ak}∞k=1 | ak ∈ R, and sup
k
ak <∞}.

That is, l∞(R) is the set of all bounded sequences of real numbers. Note that the M will vary from
sequence to sequence. For two sequences A = {an} and B = {bn}, define

d(A,B) = sup
k
|ak − bk|.

(a) For any two sequences A,B ∈ l∞(R), show that d(A,B) is a finite number.

(b) Show that d is a metric on l∞(R).

(c) Let En be the sequence with 1 at the nth place and zero everywhere else, and let O be the sequence
with zeroes everywhere. What is d(En, O)? d(En, Em) for n 6= m?

(d) Show that the set B1(O) is closed and bounded, but not compact. Hint. Show that the sequence
En from above has no limit point.
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An application of Arzela-Ascoli to differential equations

The problems in this section are only for the purpose of entertainment, and will not have any bearing
whatsoever on your performance in this course.

Our aim (following Rudin, exercise 7.25) is to show that there exists a function u : [0, 1]→ R, continuous
on [0, 1] and differentiable on (0, 1) solving the following initial value problem (IVP){

u′(t) = sin(u(t)),

u(0) = c.

For a fixed n, and i = 0, 1, · · · , n, put ti = i/n, and let un : [0, 1]→ R be the continuous function defined by
un(0) = c and such that

u′n(t) = sin(un(ti)), ti < t < ti+1.

You should think of un as the nth approximation solution to the equation. Essentially, starting at x0, between
xi and xi+1, the graph of un consists of straight line segments with slopes given by sin(un(xi)) (graph the
first few functions, say u1 and u2). Note that un is differentiable everywhere except at t = ti.

Next, define

∆n(t) =

{
u′n(t)− sin(un(t)), t 6= ti

0, otherwise.

So ∆n measures how far our approximate solutions are from being actual solutions. Moreover, by the
definition of ∆n,

un(t) = c+

∫ t

0

[sin(un(t)) + ∆n(t)] dt.

1. Show that on [0, 1], |u′n(t)| ≤ 1 (wherever it exists), |∆n(t)| ≤ 2, ∆n(t) ∈ R[0, 1], and |un(t)| ≤ |c|+ 1.

2. {un} is equicontinuous on [0, 1]. Note. You cannot directly apply mean value theorem, since un is not
differentiable everywhere on [0, 1].

3. From this deduce that there exists a subsequence, say {unk
} which converges uniformly to some u on

[0, 1].

4. Prove that sin(unk
(t))

u.c−−→ sin(u(t)) on [0, 1].

5. From this deduce that ∆nk
(t)

u.c−−→ 0 on [0, 1], since

∆n(t) = sin(un(ti))− sin(un(t))

on (ti, ti+1). Note. You have to show that the entire sequence ∆n(t) converges uniformly to zero, not
just ∆nk

(t).

6. Hence, show that

u(t) = c+

∫ t

0

sin(u(t)) dt.

From this, conclude that u(t) solves the initial value problem. Why will this argument not work, if
you can only establish pointwise convergence of {unk

}?

4


