Assignment-5
 (Due 07/23)

Only submit the questions in red.

1. Suppose f is a bounded real valued function on $[a, b]$ such that $f^{2} \in \mathcal{R}[a, b]$. Does it follow that $f \in \mathcal{R}[a, b]$? Does the answer change if we assume $f^{3} \in \mathcal{R}[a, b]$? Either give a proof or provide a counter example in each of the two cases.
2. Let

$$
f(x)=\left\{\begin{array}{l}
x^{2}, x \in \mathbb{Q} \\
0, \text { otherwise }
\end{array}\right.
$$

(a) Calculate the upper and lower integrals $U(f)$ and $L(f)$ for f on $[0, b]$.
(b) Is f integrable on $[0, b]$. Answer the question, solely based on your calculations in part(a), and not by quoting a theorem that we might have learnt in class.
3. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(t)=\left\{\begin{array}{l}
2^{-n}, 2^{-n-1}<t \leq 2^{-n} \\
0, t=0
\end{array}\right.
$$

Show that $f \in \mathcal{R}[0,1]$ by showing that given any $\varepsilon>0$, there exists a partition P such that

$$
U(P, f)-L(P, f)<\varepsilon
$$

and without appealing to the theorem of Lebesgue.
4. (a) Let $f \in \mathcal{R}[a, b]$ and $\left\{p_{1}, \cdots p_{n}\right\}$ be a finite collection of points in $[a, b]$. Let $g:[a . b] \rightarrow \mathbb{R}$ be a bounded function such that

$$
f(t)=g(t)
$$

for all $t \in[a, b] \backslash\left\{p_{1}, \cdots, p_{n}\right\}$. Show that $g \in \mathcal{R}[a, b]$ and that

$$
\int_{a}^{b} g(t) d t=\int_{a}^{b} f(t) d t
$$

Hint. Do it for one point at a time.
(b) Is the conclusion true, if we instead have a countable collection of points $\left\{p_{n}\right\}_{n=1}^{\infty}$? Hint. What is the most basic non-integrable function that you know?
5. (a) If $f \in \mathcal{R}[0,1]$, show that

$$
\int_{0}^{1} f(t) d t=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right)
$$

(b) Give an example of a bounded function $f:[0,1] \rightarrow \mathbb{R}$ for which the limit on the right exists, but f is not Riemann integrable.
(c) Use part(a) to evaluate the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}} \sum_{k=1}^{n} \frac{1}{\sqrt{k}}
$$

6. (a) Let f be a continuous real valued function on $[a, b]$. Show that there exists a $c \in[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(t) d t
$$

(b) More generally, if f is continuous on $[a, b], g \in \mathcal{R}[a, b]$ and g does not change sign (you can assume $g \geq 0$), then prove that exists a $c \in[a, b]$ such that

$$
\int_{a}^{b} f(t) g(t) d t=f(c) \int_{a}^{b} g(t) d t
$$

Hint. Let $I=\int_{a}^{b} g(t) d t \neq 0$ and $f[a, b]=[m, M]$. The proof is easy if $I=0$. If $I \neq 0$, show that

$$
m<\frac{1}{I} \int_{a}^{b} f(t) g(t) d t<M
$$

and use intermediate value theorem.
7. Let $f:[1, \infty) \rightarrow(0, \infty)$ be a continuous, decreasing function such that $\lim _{x \rightarrow \infty} f(x)=0$. Denote

$$
s_{n}=\sum_{k=1}^{n} f(k), I_{n}=\int_{1}^{n} f(t) d t, d_{n}=s_{n}-I_{n}
$$

(a) Show that $f(n)+I_{n} \leq s_{n} \leq f(1)+I_{n}$.
(b) (Integral test for convergence) Hence show that $\sum_{n=1}^{\infty} f(n)$ converges if and only if $\int_{1}^{\infty} f(x) d x$ converges.
(c) Use the above test, to find all possible values of p and q for which the following series converge.

1. $\sum_{n=2}^{\infty} \frac{1}{n^{p}(\ln n)^{q}}$
2. $\sum_{n=3}^{\infty} \frac{1}{n \ln n(\ln \ln n)^{p}}$.
3. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous function, and let $p, q:[c, d] \rightarrow[a, b]$ be continuous functions, differentiable on the interior (c, d). Define

$$
F(x)=\int_{p(x)}^{q(x)} f(t) d t
$$

Show that F is continuous on $[c, d]$ and differentiable on (c, d), and that

$$
F^{\prime}(x)=f(q(x)) q^{\prime}(x)-f(p(x)) p^{\prime}(x)
$$

Hint. Write F as a composition of two functions, one of which can be differentiated using the fundamental theorem of calculus. Then properties of F follow from corresponding properties of compositions.
(b) Now, let $F:(0, \pi) \rightarrow \mathbb{R}$ be defined by

$$
F(x)=\int_{\sin x}^{1} \ln t d t
$$

Calculate $F^{\prime}(\pi / 4)$ and $F^{\prime}(\pi / 2)$ in two ways. First, by evaluating the integral, and then differentiating. And second, by using part(a) above. Your answers should of course be the same.
9. (a) Let $f(x)=|x|$, and define $F(x)=\int_{-1}^{x} f(t) d t$. Find a piecewise algebraic formula for $F(x)$. Where is F continuous? Where is it differentiable? Where does $F^{\prime}=f$?
(b) Now repeat part(a) with

$$
f(x)=\left\{\begin{array}{l}
1, x<0 \\
2, x \geq 0
\end{array}\right.
$$

10. Calculate $\lim _{x \rightarrow 0} \frac{1}{x} \int_{0}^{x} e^{t^{2}} d t$. Give complete justifications, quoting any theorems that might have been used.
11. Find the set of all values of p for which the following improper integrals converge.
12. $\int_{0}^{1} \frac{1-\sin x}{x^{p}}$.
13. $\int_{0}^{\infty} \frac{\ln (1+x)}{x^{p}}$.

Hint. Taylor's theorem might be useful while analyzing the integrands near $x=0$.
12. (a) Show that for $n=1,2,3, \cdots$

$$
\int_{(n-1) \pi}^{n \pi}\left|\frac{\sin x}{x}\right| d x \geq \frac{2}{n \pi}
$$

(b) Hence show that $\int_{\pi}^{\infty}\left|\frac{\sin x}{x}\right| d x$ diverges.
(c) For any $R>0$, show that

$$
\int_{\pi}^{R} \frac{\sin x}{x} d x=\frac{1}{\pi}-\frac{\cos R}{R}-\int_{\pi}^{R} \frac{\cos x}{x^{2}} d x
$$

(d) Hence, show that $\int_{\pi}^{\infty} \frac{\sin x}{x} d x$ is a convergent integral.

Remark In fact, one can show that

$$
\int_{0}^{\infty} \frac{\sin x}{x}=\frac{\pi}{2}
$$

This formula is usually one of the high points of a course in complex analysis, and is a consequence of the so-called residue theorem (yes, a real integral evaluated using complex numbers!). But there are are several, real-variable proofs of this, including using doubles integrals or using differentiation under the integral sign (popularized by Feynman, as an alternative to residue calculus).

