
Assignment-5
(Due 07/23)

Only submit the questions in red.

1. Suppose f is a bounded real valued function on [a, b] such that f2 ∈ R[a, b]. Does it follow that
f ∈ R[a, b]? Does the answer change if we assume f3 ∈ R[a, b]? Either give a proof or provide a counter
example in each of the two cases.

2. Let

f(x) =

{
x2, x ∈ Q
0, otherwise.

(a) Calculate the upper and lower integrals U(f) and L(f) for f on [0, b].

(b) Is f integrable on [0, b]. Answer the question, solely based on your calculations in part(a), and not
by quoting a theorem that we might have learnt in class.

3. Let f : [0, 1]→ R be defined by

f(t) =

{
2−n, 2−n−1 < t ≤ 2−n

0, t = 0.
.

Show that f ∈ R[0, 1] by showing that given any ε > 0, there exists a partition P such that

U(P, f)− L(P, f) < ε,

and without appealing to the theorem of Lebesgue.

4. (a) Let f ∈ R[a, b] and {p1, · · · pn} be a finite collection of points in [a, b]. Let g : [a.b] → R be a
bounded function such that

f(t) = g(t),

for all t ∈ [a, b] \ {p1, · · · , pn}. Show that g ∈ R[a, b] and that∫ b

a

g(t) dt =

∫ b

a

f(t) dt.

Hint. Do it for one point at a time.

(b) Is the conclusion true, if we instead have a countable collection of points {pn}∞n=1? Hint. What is
the most basic non-integrable function that you know?

5. (a) If f ∈ R[0, 1], show that ∫ 1

0

f(t) dt = lim
n→∞

1

n

n∑
k=1

f
(k
n

)
.

(b) Give an example of a bounded function f : [0, 1]→ R for which the limit on the right exists, but f
is not Riemann integrable.
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(c) Use part(a) to evaluate the limit

lim
n→∞

1√
n

n∑
k=1

1√
k
.

6. (a) Let f be a continuous real valued function on [a, b]. Show that there exists a c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a

f(t) dt.

(b) More generally, if f is continuous on [a, b], g ∈ R[a, b] and g does not change sign (you can assume
g ≥ 0), then prove that exists a c ∈ [a, b] such that∫ b

a

f(t)g(t) dt = f(c)

∫ b

a

g(t) dt.

Hint. Let I =
∫ b
a
g(t) dt 6= 0 and f [a, b] = [m,M ]. The proof is easy if I = 0. If I 6= 0, show that

m <
1

I

∫ b

a

f(t)g(t) dt < M,

and use intermediate value theorem.

7. Let f : [1,∞)→ (0,∞) be a continuous, decreasing function such that limx→∞ f(x) = 0. Denote

sn =

n∑
k=1

f(k), In =

∫ n

1

f(t) dt, dn = sn − In.

(a) Show that f(n) + In ≤ sn ≤ f(1) + In.

(b) (Integral test for convergence) Hence show that
∑∞
n=1 f(n) converges if and only if

∫∞
1
f(x) dx

converges.

(c) Use the above test, to find all possible values of p and q for which the following series converge.

1.
∑∞
n=2

1
np(lnn)q 2.

∑∞
n=3

1
n lnn(ln lnn)p .

8. (a) Let f : [a, b] → R be continuous function, and let p, q : [c, d] → [a, b] be continuous functions,
differentiable on the interior (c, d). Define

F (x) =

∫ q(x)

p(x)

f(t) dt.

Show that F is continuous on [c, d] and differentiable on (c, d), and that

F ′(x) = f(q(x))q′(x)− f(p(x))p′(x).

Hint. Write F as a composition of two functions, one of which can be differentiated using the
fundamental theorem of calculus. Then properties of F follow from corresponding properties of
compositions.

(b) Now, let F : (0, π)→ R be defined by

F (x) =

∫ 1

sin x

ln t dt.

Calculate F ′(π/4) and F ′(π/2) in two ways. First, by evaluating the integral, and then differenti-
ating. And second, by using part(a) above. Your answers should of course be the same.
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9. (a) Let f(x) = |x|, and define F (x) =
∫ x
−1 f(t) dt. Find a piecewise algebraic formula for F (x). Where

is F continuous? Where is it differentiable? Where does F ′ = f?

(b) Now repeat part(a) with

f(x) =

{
1, x < 0

2, x ≥ 0.

10. Calculate limx→0
1
x

∫ x
0
et

2

dt. Give complete justifications, quoting any theorems that might have been
used.

11. Find the set of all values of p for which the following improper integrals converge.

1.
∫ 1

0
1−sin x
xp . 2.

∫∞
0

ln(1+x)
xp .

Hint. Taylor’s theorem might be useful while analyzing the integrands near x = 0.

12. (a) Show that for n = 1, 2, 3, · · · ∫ nπ

(n−1)π

∣∣∣ sinx
x

∣∣∣ dx ≥ 2

nπ
.

(b) Hence show that
∫∞
π

∣∣∣ sin xx ∣∣∣ dx diverges.

(c) For any R > 0, show that ∫ R

π

sinx

x
dx =

1

π
− cosR

R
−
∫ R

π

cosx

x2
dx.

(d) Hence, show that
∫∞
π

sin x
x dx is a convergent integral.

Remark In fact, one can show that ∫ ∞
0

sinx

x
=
π

2
.

This formula is usually one of the high points of a course in complex analysis, and is a consequence of
the so-called residue theorem (yes, a real integral evaluated using complex numbers!). But there are are
several, real-variable proofs of this, including using doubles integrals or using differentiation under the
integral sign (popularized by Feynman, as an alternative to residue calculus).
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