Assignment-4

(not to be handed in)

1. Show that if f is differentiable at $x=p$, then

$$
\lim _{h \rightarrow 0} \frac{f(p+h)-f(p-h)}{2 h}=f^{\prime}(p)
$$

2. Let f and g be differentiable functions on (a, b) and let $p \in(a, b)$. Define

$$
h(t)=\left\{\begin{array}{l}
f(t), t \in(a, p) \\
g(t), t \in[p, b)
\end{array}\right.
$$

Show that h is differentiable on (a, b) if and only if $f(p)=g(p)$ and $f^{\prime}(p)=g^{\prime}(p)$.
3. (a) Show that $|\sin \theta| \leq|\theta|$, for all $\theta \in \mathbb{R}$.
(b) More generally, show that if $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable such that $\left|g^{\prime}(t)\right| \leq M$ and $g(0)=0$, then

$$
|g(t)| \leq M|t|
$$

for all $t \in \mathbb{R}$.
4. (a) Show that $\tan x>x$ for all $x \in(0, \pi / 2)$.
(b) Show that

$$
\frac{2 x}{\pi}<\sin x<x
$$

for all $x \in[0, \pi / 2]$. Hint. Consider the function $\sin x / x$. Is it monotonic?
5. Find the following limits if they exist.

1. $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$
2. $\lim _{x \rightarrow 0} \frac{1-\cos 2 x-2 x^{2}}{x^{4}}$
3. $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}$
4. $\lim _{x \rightarrow 0}(\cos x)^{1 / x^{2}}$
5. $\lim _{x \rightarrow 0^{+}} \frac{1-\cos x}{e^{x}-1}$
6. $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
7. Consider the functions

$$
f(x)=x+\cos x \sin x \text { and } g(x)=e^{\sin x}(x+\cos x \sin x)
$$

(a) Show that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} g(x)=\infty$.
(b) Show that if $\cos x \neq 0$ and $x>3$, then

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}
$$

(c) Show that

$$
\lim _{x \rightarrow \infty} \frac{2 e^{-\sin x} \cos x}{2 \cos x+f(x)}=0
$$

and yet, the limit $\lim _{x \rightarrow \frac{f(x)}{g(x)}}$ does not exist.
(d) Explain why this does not contradict L'Hospital's rule.
7. (a) Show that $e^{x} \geq 1+x$ for all $x \in \mathbb{R}$.
(b) Show that there exists a constant $M>0$ such that

$$
\left|\frac{e^{x}-1-x}{x^{2}}-\frac{1}{2}\right| \leq M|x|
$$

for all $x \in[-1,1] \backslash\{0\}$. Hint. Taylor's thoerem.
(c) Compute

$$
\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}
$$

8. Show the following Bernoulli's inequalities.
(a) If $r \in[0,1]$ and $x \geq-1$, show that

$$
(1+x)^{r} \leq 1+r x
$$

(b) If $r \in(-\infty, 0) \cup(1, \infty)$, and $x \geq-1$, show that

$$
(1+x)^{r} \geq 1+r x
$$

Hint. You can either use the try to find the local max or min, or simply use the fact that if $f^{\prime} \geq 0$, then f is increasing.
9. Suppose $f \in C^{5}[-1,1]$, such that $f(0)=1$, and $f^{\prime}(0)=\cdots=f^{4}(0)=0$. If $f^{5}(0)<0$, show that there exists a $\delta>0$ such that

$$
f(x)<1
$$

for all $x \in(0, \delta)$.
10. A function $f: E \rightarrow \mathbb{R}$ is called Lipschitz (or more precisely M-Lipschitz) if there exists an $M>0$ such that for all $x, y \in E$,

$$
|f(x)-f(y)| \leq M|x-y|
$$

(a) Show that any Lipschitz function is uniformly continuous.
(b) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is a differentiable function such that $\left|f^{\prime}(t)\right| \leq M$ for all $t \in(a, b)$, then f is M-Lipschitz.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a contraction, that is an α-Lipschitz function, for some $\alpha<1$. Show that there exists a fixed point p, that is, a $p \in \mathbb{R}$ such that $f(x)=x$. Hint. Let $x_{0} \in \mathbb{R}$ be any real number. Having chosen $x_{0}, x_{1}, \cdots, x_{n}$, let $x_{n+1}=f\left(x_{n}\right)$. Show that $\left\{x_{n}\right\}$ is a Cauchy sequence, and hence must converge, and that the limit p must satisfy $f(p)=p$.
(d) Show that the fixed point so obtained will be unique.
11. For $\alpha>0$, a function $f: E \rightarrow \mathbb{R}$ is said to be α-Hölder, if

$$
|f(x)-f(y)| \leq M|x-y|^{\alpha}
$$

for all $x, y \in E$ and some $M>0$.
(a) Show that any α-Hölder function is uniformly continuous.
(b) Show that if $f:(a, b) \rightarrow \mathbb{R}$ is α-Hölder for some $\alpha>1$, then f is differentiable, and is in fact a constant function.
12. Assume that f has a finite derivative on (a, ∞).
(a) If $f(x) \rightarrow 1$ and $f^{\prime}(x) \rightarrow c$ as $x \rightarrow \infty$, prove that $c=0$. Hint. Show, using the mean value theorem, that there is a sequence $x_{n} \in(n, n+1)$ such that $f^{\prime}\left(x_{n}\right) \rightarrow 0$.
(b) If $f^{\prime}(x) \rightarrow 1$ as $x \rightarrow \infty$, prove that

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=1
$$

