Assignment-4 (not to be handed in)

1. Show that if f is differentiable at x = p, then

$$\lim_{h \to 0} \frac{f(p+h) - f(p-h)}{2h} = f'(p).$$

2. Let f and g be differentiable functions on (a, b) and let $p \in (a, b)$. Define

$$h(t) = \begin{cases} f(t), \ t \in (a, p) \\ g(t), \ t \in [p, b). \end{cases}$$

Show that h is differentiable on (a, b) if and only if f(p) = g(p) and f'(p) = g'(p).

- 3. (a) Show that $|\sin \theta| \le |\theta|$, for all $\theta \in \mathbb{R}$.
 - (b) More generally, show that if $g: \mathbb{R} \to \mathbb{R}$ is differentiable such that $|g'(t)| \leq M$ and g(0) = 0, then

$$|g(t)| \le M|t|$$

for all $t \in \mathbb{R}$.

- 4. (a) Show that $\tan x > x$ for all $x \in (0, \pi/2)$.
 - (b) Show that

$$\frac{2x}{\pi} < \sin x < x$$

for all $x \in [0, \pi/2]$. Hint. Consider the function $\sin x/x$. Is it monotonic?

5. Find the following limits if they exist.

1.
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$

2. $\lim_{x \to 0} \frac{1 - \cos 2x - 2x^2}{x^4}$
3. $\lim_{x \to \infty} (e^x + x)^{1/x}$
4. $\lim_{x \to 0} (\cos x)^{1/x^2}$
5. $\lim_{x \to 0^+} \frac{1 - \cos x}{e^x - 1}$
6. $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x}\right)$

6. Consider the functions

$$f(x) = x + \cos x \sin x$$
 and $g(x) = e^{\sin x} (x + \cos x \sin x)$.

- (a) Show that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$.
- (b) Show that if $\cos x \neq 0$ and x > 3, then

$$\frac{f'(x)}{g'(x)} = \frac{2e^{-\sin x} \cos x}{2\cos x + f(x)}.$$

(c) Show that

$$\lim_{x \to \infty} \frac{2e^{-\sin x} \cos x}{2\cos x + f(x)} = 0.$$

and yet, the limit $\lim_{x\to} \frac{f(x)}{g(x)}$ does not exist.

- (d) Explain why this does not contradict L'Hospital's rule.
- 7. (a) Show that $e^x \ge 1 + x$ for all $x \in \mathbb{R}$.
 - (b) Show that there exists a constant M > 0 such that

$$|\frac{e^x - 1 - x}{x^2} - \frac{1}{2}| \le M|x|,$$

for all $x \in [-1, 1] \setminus \{0\}$. Hint. Taylor's theorem.

(c) Compute

$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}.$$

- 8. Show the following *Bernoulli's* inequalities.
 - (a) If $r \in [0, 1]$ and $x \ge -1$, show that

$$(1+x)^r \le 1 + rx.$$

(b) If $r \in (-\infty, 0) \cup (1, \infty)$, and $x \ge -1$, show that

$$(1+x)^r \ge 1 + rx.$$

Hint. You can either use the try to find the local max or min, or simply use the fact that if $f' \ge 0$, then f is increasing.

9. Suppose $f \in C^5[-1,1]$, such that f(0) = 1, and $f'(0) = \cdots = f^4(0) = 0$. If $f^5(0) < 0$, show that there exists a $\delta > 0$ such that

f(x) < 1,

for all $x \in (0, \delta)$.

10. A function $f: E \to \mathbb{R}$ is called *Lipschitz* (or more precisely *M*-Lipschitz) if there exists an M > 0 such that for all $x, y \in E$,

$$|f(x) - f(y)| \le M|x - y|$$

- (a) Show that any Lipschitz function is uniformly continuous.
- (b) Show that if $f:(a,b) \to \mathbb{R}$ is a differentiable function such that $|f'(t)| \le M$ for all $t \in (a,b)$, then f is *M*-Lipschitz.
- (c) Let $f : \mathbb{R} \to \mathbb{R}$ be a *contraction*, that is an α -Lipschitz function, for some $\alpha < 1$. Show that there exists a *fixed point* p, that is, a $p \in \mathbb{R}$ such that f(x) = x. **Hint.** Let $x_0 \in \mathbb{R}$ be any real number. Having chosen x_0, x_1, \dots, x_n , let $x_{n+1} = f(x_n)$. Show that $\{x_n\}$ is a Cauchy sequence, and hence must converge, and that the limit p must satisfy f(p) = p.
- (d) Show that the fixed point so obtained will be unique.
- 11. For $\alpha > 0$, a function $f : E \to \mathbb{R}$ is said to be α -Hölder, if

$$|f(x) - f(y)| \le M|x - y|^{\alpha},$$

for all $x, y \in E$ and some M > 0.

- (a) Show that any α -Hölder function is uniformly continuous.
- (b) Show that if $f:(a,b) \to \mathbb{R}$ is α -Hölder for some $\alpha > 1$, then f is differentiable, and is in fact a constant function.
- 12. Assume that f has a finite derivative on (a, ∞) .
 - (a) If $f(x) \to 1$ and $f'(x) \to c$ as $x \to \infty$, prove that c = 0. **Hint.** Show, using the mean value theorem, that there is a sequence $x_n \in (n, n+1)$ such that $f'(x_n) \to 0$.
 - (b) If $f'(x) \to 1$ as $x \to \infty$, prove that

$$\lim_{x \to \infty} \frac{f(x)}{x} = 1.$$