Assignment-3
 (Due 07/09)

Only submit the questions in red.

1. (a) Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous such that for some $p \in(a, b), f(p)>0$. Show that there exists a $\delta>0$ such that $f(x)>0$ for all $x \in(p-\delta, p+\delta)$.
(b) Let $E \subset \mathbb{R}$ be a subset such that there exists a sequence $\left\{x_{n}\right\}$ in E with the property that $x_{n} \rightarrow$ $x_{0} \notin E$. Show that there is an unbounded continuous function $f: E \rightarrow \mathbb{R}$.
2. (a) If $a, b \in \mathbb{R}$, show that

$$
\max \{a, b\}=\frac{(a+b)+|a-b|}{2}
$$

(b) Show that if $f_{1}, f_{2}, \cdots, f_{n}$ are continuous functions on a domain $E \subset \mathbb{R}$, then

$$
g(x)=\max \left\{f_{1}(x), \cdots, f_{n}(x)\right\}
$$

is again a continuous function on E.
(c) Let's explore if the infinite version of this true or not. For each $n \in \mathbb{N}$, define

$$
f_{n}(x)=\left\{\begin{array}{l}
1,|x| \geq 1 / n \\
n|x|,|x|<1 / n
\end{array}\right.
$$

Explicitly compute $h(x)=\sup \left\{f_{1}(x), f_{2}(x), \cdots, f_{n}(x), \cdots\right\}$. Is it continuous?
3. For each of the following, decide if the function is uniformly continuous or not. In either case, give a proof using just the definition in terms of ε and δ.
(a) $f(x)=\sqrt{x^{2}+1}$ on $(0,1)$.
(b) $g(x)=x \sin (1 / x)$ on $(0,1)$.
(c) $g(x)=\frac{1}{x^{2}}$ on $[1, \infty)$.
(d) $g(x)=\frac{1}{x^{2}}$ on $(0,1]$
4. (a) Let $f: E \rightarrow \mathbb{R}$ be uniformly continuous. If $\left\{x_{n}\right\}$ is a Cauchy sequence in E, show that $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence.
(b) Show, by exhibiting an example, that the above statement is not true if f is merely assumed to be continuous.
(c) Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous. Show that there exists a continuous function $F:[a, b] \rightarrow \mathbb{R}$ such that $F(x)=f(x)$ for all $x \in(a, b)$ if and only if f is uniformly continuous. Hint. Given f, how should you define $F(a)$ and $F(b)$?
5. (a) Show directly from the definition of uniform continuity, that any uniformly continuous function $f:(a, b) \rightarrow \mathbb{R}$ is bounded.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is uniformly continuous, show that there exist $A, B \in \mathbb{R}$ such that $|f(x)| \leq A|x|+B$ for all $x \in \mathbb{R}$. Hint. Again apply the definition of uniform continuity with $\varepsilon=1$. For the corresponding $\delta>0$, note that any $x \in \mathbb{R}$ can be reached from 0 be a sequence of roughly $|x| / \delta$ steps. Now apply the triangle inequality repeatedly to compare $|f(x)|$ with $|f(0)|$.
6. Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous with $f(0)=f(1)$.
(a) Show that there must exist $x, y \in[0,1]$ satisfying $|x-y|=1 / 2$ such that $f(x)=f(y)$. Hint. Consider the function $g(x)=f(x+1 / 2)-f(x)$ on $[0,1 / 2]$ and use intermediate value theorem.
(b) Show that for each $n \in \mathbb{N}$, there exist $x_{n}, y_{n} \in[0,1]$ such that $f\left(x_{n}\right)=f\left(y_{n}\right)$. Hint. Again consider $g_{n}(x)=f(x+1 / n)-f(x)$ on $\left[0, \frac{n-1}{n}\right]$. Can $g_{n}(k / n)$ all have the same sign for $k=0,1, \cdots, \frac{n-1}{n}$?
(c) On the other hand, if $h \in[0,1 / 2]$ is not of the form $1 / n$, show that there does not necessarily exist x, y such that $|x-y|=h$ with $f(x)=f(y)$. Give an example with $h=2 / 5$.
7. For each stated limit, and ε, find the largest possible δ-neighborhood that makes the definition of limits work.
(a) $\lim _{x \rightarrow 4} \sqrt{x}=2, \varepsilon=1$.
(b) $\lim _{x \rightarrow \pi}\lfloor x\rfloor=3, \varepsilon=0.01$.
8. Compute each limit or state that it does not exist. Use any of the tools to justify your answer.
(a) $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$.
(b) $\lim _{x \rightarrow 0} \sqrt[3]{x}(-1)^{\lfloor 1 / x\rfloor}$
9. Recall that every rational number x can be written as m / n, where $n>0$ and $\operatorname{gcd}(m, n)=1$. When $x=0$, we take $m=0$ and $n=1$. Consider $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{l}
0, x \text { is irrational } \\
\frac{1}{n}, x=\frac{m}{n}
\end{array}\right.
$$

(a) Show that for any real number α and and integer N, there exists a $\delta>0$ such that every rational number in the interval $(\alpha-\delta, \alpha+\delta)$, not equal to α, has denominator greater than N. Hint. First show that the number of rational numbers in $(\alpha-1, \alpha+1)$ with denominator smaller than N is finite. Then choose $\delta<1$ small enough to exclude all these rationals.
(b) For any real number α, show that $\lim _{t \rightarrow \alpha} f(t)=0$.
(c) Prove that f is continuous at every irrational number, and has a removable discontinuity at every rational number.
10. Suppose a and c are real numbers, $c>0$, and $f:[-1,1] \rightarrow \mathbb{R}$ is defined by

$$
f(x)=\left\{\begin{array}{l}
x^{a} \sin \left(|x|^{-c}\right)(x \neq 0), \\
0(x=0)
\end{array}\right.
$$

Prove the following statements.
(a) f is continuous if and only if $a>0$.
(b) $f^{\prime}(0)$ exists if and only if $a>1$.
(c) $f^{\prime}(x)$ is bounded if and only if $a \geq 1+c$.
(d) $f^{\prime}(x)$ is continuous if and only if $a>1+c$.

