Assignment-2
 (Due 07/02)

Only submit the questions in red.

1. (a) For any two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ show that

$$
\limsup _{n \rightarrow \infty}\left(a_{n}+b_{n}\right) \leq \limsup _{n \rightarrow \infty} a_{n}+\limsup _{n \rightarrow \infty} b_{n}
$$

unless the right hand side is of the form $\infty-\infty$.
(b) Find sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ with strict inequality above.
2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers, and let

$$
S=\left\{x \in \mathbb{R} \mid \exists \text { a sub-sequence } a_{n_{k}} \text { such that } a_{n_{k}} \xrightarrow{k \rightarrow \infty} x\right\}
$$

(a) Show that $L=\limsup a_{n}$ if and only if $L=\sup S$.
(b) Formulate and prove the analogous statement for lim inf.

Note. From now on, you can use the conclusions of this exercise as a theorem. So now, you have a definition of limsup and two other equivalent characterizations.
3. Find the limsup and liminf of the sequence $\left\{a_{n}\right\}$ defined recursively by

$$
a_{1}=0, a_{2 m}=\frac{a_{2 m-1}}{2}, a_{2 m+1}=\frac{1}{2}+a_{2 m}
$$

Justify your answers with complete proofs.
4. (a) Let $\left\{a_{n}\right\}$ be a bounded sequence with the property that every convergent subsequence converges to the same limit a. Show that the entire sequence $\left\{a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n}=a$.
(b) Now assume that $\left\{a_{n}\right\}$ is a sequence with the property that every subsequence has a further subsequence that converges to the same limit a. Show that the entire sequence $\left\{a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n}=a$.
5. Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of real numbers satisfying

$$
\left|a_{n+1}-a_{n}\right| \leq \frac{1}{2}\left|a_{n}-a_{n-1}\right|
$$

Show that the sequence converges. Hint. Show that the sequence is Cauchy.
6. Let $S=\left\{n_{1}, n_{2}, \cdots\right\}$ denote the collection of those positive integers that do not have the digit 0 in their decimal representation. (For example $7 \in S$ but $101 \notin S$). Show that $\sum_{k=1}^{\infty} 1 / n_{k}$ converges. Note. This should be a surprising result in that leaving out only a few (but of course still infinite) terms out of the harmonic series, we end up with a series that suddenly converges.
7. The Fibonacci numbers $\left\{f_{n}\right\}$ are defined by

$$
f_{0}=f_{1}=1, \text { and } f_{n+1}=f_{n}+f_{n-1} \text { for } n=1,2, \cdots
$$

For $n=1,2, \cdots$, we also define $r_{n}=f_{n+1} / f_{n}$.
(a) Find a formula for r_{n+1} in terms of r_{n}.
(b) Show that $f_{n} \geq n$ for all $n \geq 2$.
(c) Show that $f_{n+1} f_{n-1}-f_{n}^{2}=(-1)^{n+1}$.
(d) Hence show that if $n \geq 2$, then

$$
\left|r_{n+1}-r_{n}\right| \leq \frac{1}{(n-1)^{2}} .
$$

(e) Hence show that the sequence of ratios $\left\{r_{n}\right\}$ converge, and compute it's limit. Note. This limit is the so-called golden ratio.
8. Investigate the behavior of each series (convergence, divergence, conditional convergence, absolute convergence). In cases that there is a parameter (p, q or r) find the range of values where the series exhibits the above behavior.

1. $\sum_{n=1}^{\infty} p^{n} n^{p}(p>0)$
2. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sqrt{n+1}-\sqrt{n}}{n^{p}}$
3. $\sum_{n=1}^{\infty} \frac{1}{p^{n}-q^{n}},(0<q<p)$
4. $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
5. $\sum_{n=1}^{\infty}(\sqrt[n]{n}-1)^{n}$
6. $\sum_{n=1}^{\infty} \frac{1}{1+r^{n}}$.
7. (a) Let $\left\{a_{n}\right\}$ be a sequence of of positive real numbers. Show that

$$
\liminf _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \leq \liminf _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} \leq \limsup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

You may assume that each of the quantities is finite, even though the result holds true for extended reals. Hint. Proceed by contradiction. For instance, for the rightmost inequality, let $U=\lim \sup _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$ and $L=\lim \sup _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ and suppose $L>U$. Then use the equivalent characterizations of lim sup to draw a contradiction.
(b) Show that if $\sum a_{n}$ converges by the ratio test, then $\sum a_{n}$ also converges by the root test.
(c) Consider the sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$,

$$
a_{n}=\frac{1}{2^{n+(-1)^{n}}}= \begin{cases}\frac{1}{2^{n-1}}, & n \text { is odd } \\ \frac{1}{2^{n+1}}, & n \text { is even. }\end{cases}
$$

Compute (with proper justifications) limsup $\sqrt[n]{\left|a_{n}\right|}$ and $\lim \sup \left|a_{n+1} / a_{n}\right|$. Show that the series converges by the root test. Does the ration test work?
(d) Let $b_{n}=n^{n} / n$!. Show that

$$
\lim _{n \rightarrow \infty} \sqrt[n]{b_{n}}=e
$$

Hint. It is easier to compute the limiting ratios.
10. (a) Show that if $a_{n}>0$, and $\lim _{n \rightarrow \infty} n a_{n}=l \neq 0$, then $\sum a_{n}$ diverges.
(b) Given that $\sum a_{n}$ converges absolutely, show that $\sum a_{n}^{p}$ also converges whenever $p>1$. Give a counterexample, if $\sum a_{n}$ only converges conditionally.
11. Consider each of the following propositions. Provide short proofs for those that are true and counterexamples for any that are not.
(a) If $\sum a_{n}$ converges and the sequence $\left\{b_{n}\right\}$ also converges, then $\sum a_{n} b_{n}$ converges.
(b) If $\sum a_{n}$ converges conditionally, then $\sum n^{2} a_{n}$ diverges.
(c) If $\left\{a_{n}\right\}$ is a decreasing sequence, and $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} n a_{n}=0$.
12. (a) For any $n \in \mathbb{N}$, show that the function $p_{n}(x)=x^{n}$ is continuous on all of \mathbb{R}. Show the explicit dependence of δ on ε and the point that you are looking at.
(b) Show that $f(x)=\sqrt{x}$ is continuous on $(0, \infty)$.
(c) Show that $f_{n}(x)=x^{1 / n}$ is continuous on $(0, \infty)$.

Hint. For all parts the following identity might be useful.

$$
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+a b^{n-2}+b^{n-1}\right) .
$$

