Assignment-1
 (Due 06/25)

In each of the following, only use (and indicate) theorems or axioms introduced in the lectures. Only hand in the problems in red.

1. (a) Show that $\sqrt{12}$ is irrational.
(b) Now consider the set $E:=\left\{\alpha \in \mathbb{Q} \mid \alpha^{2}<12\right\}$. Given any $\beta \in \mathbb{Q}$ such that $\beta^{2}<12$, find an explicit rational number $\varepsilon>0$ (depending of course on β), such that $(\beta+\varepsilon)^{2}<12$. Hint. It is easy to see that $\beta<4$. Also if ε is chosen less than 1 , then $\varepsilon^{2}<\varepsilon$ (which order axiom are we using?).
(c) Similarly, if $\beta^{2}>12$, and $\beta<4$, find an explicit positive rational number ε such that $(\beta-\varepsilon)^{2}>12$ and yet $\beta-\varepsilon$ is an upper bound of E.
(d) Hence show that E has no least upper bound in \mathbb{Q}.
2. Let $A, B \subset \mathbb{R}$.
(a) If $\sup A<\sup B$, then show that there is some $b \in B$ which is an upper bound for A.
(b) Show, by providing an example, that this is not necessarily the case if $\sup A \leq \sup B$.
3. Let $a<b$ be real numbers, and consider the set $T=\mathbb{Q} \cap[a, b]$. Show that $\inf T=a$ and $\sup T=b$.
4. Let $a, b \in \mathbb{R}$.
(a) Show that $|b| \leq a$ if and only if $-a \leq b \leq a$.
(b) Show that $\||b|-|a||\leq|b-a|$.
5. (a) Let $a, b \in \mathbb{R}$ such that $a \leq b+\frac{1}{n}$ for all $n \in \mathbb{N}$. Show that $a \leq b$.
(b) Show that if $a>0$, then there exists a natural number $n \in \mathbb{N}$ such that $\frac{1}{n} \leq a \leq n$.
(c) Let $a, b \in \mathbb{R}$ such that $a<b$. Use the denseness of \mathbb{Q} to show that there are infinitely many rationals between a and b.
6. * Let A and B be non-empty subsets of \mathbb{R}, and let

$$
A+B:=\{a+b \mid a \in A, b \in B\} .
$$

That is, $A+B$ is the set of all sums $a+b$, where $a \in A$ and $b \in B$.
(a) Show that $\sup (A+B)=\sup A+\sup B$. Note. You need to separately consider the case when at least one of the two supremums on the right is ∞.
(b) $\inf (A+B)=\inf A+\inf B$.
7. For each sequence, find the limit, and use the definition of limits to prove that the sequence does indeed converge to the proposed limit. Note that this means, given an $\varepsilon>0$, you need to write down an N for which the definition of convergence works. Try to make the dependence of N on ε as explicit as possible.
(a) $\lim _{n \rightarrow \infty} \frac{3 n+1}{6 n+5}$.
(b) $\lim _{n \rightarrow \infty}\left\lfloor\frac{12+4 n}{3 n}\right\rfloor$, where for any $x \in \mathbb{R}$, the floor function $\lfloor x\rfloor$ is the greatest integer smaller than or equal to x (for instance, $\lfloor\pi\rfloor=3,\lfloor-2.3\rfloor=-3$).
8. Give an example of each of the following or state that such a request is impossible by referencing the correct theorem or giving a complete proof.
(a) Sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ that both diverge, but $\left\{x_{n}+y_{n}\right\}$ converges.
(b) Sequence $\left\{x_{n}\right\}$ converges and $\left\{y_{n}\right\}$ diverges, but $\left\{x_{n}+y_{n}\right\}$ converges.
(c) Two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ where $\left\{x_{n} y_{n}\right\}$ and $\left\{x_{n}\right\}$ converge, but $\left\{y_{n}\right\}$ diverges.
(d) Let $k \in \mathbb{N}$ be fixed. Then sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges but $\left\{a_{n+k}\right\}_{n=1}^{\infty}$ might not converge, or even if it converges, might not converge to the same limit.
9. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences, and let $\left\{z_{n}\right\}$ by the "shuffled" sequence $\left\{x_{1}, y_{1}, x_{2}, y_{2}, \cdots\right\}$.
(a) Find a general formula for z_{n}.
(b) Show that $\left\{z_{n}\right\}$ converges if and only if both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to the same value.
10. Let $a_{1}=1$ and

$$
a_{n+1}=\frac{1}{3}\left(a_{n}+1\right)
$$

for $n>1$.
(a) Find a_{2}, a_{3} and a_{4}.
(b) Use induction to show that $a_{n}>1 / 2$ for all n.
(c) Show that $\left\{a_{n}\right\}$ is a convergent sequence and compute it's limit.
11. (a) Show that the sequence

$$
\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \cdots
$$

converges, and find it's limit.
(b) Does the sequence $\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}$ converge? Give a complete proof. If it does converge, also find the limit.
12. (Arithmetic and geometric means)
(a) Show that

$$
\frac{x+y}{2} \geq \sqrt{x y}
$$

The quantity on the left is the arithmetic mean, and the quantity on the right is the geometric mean.
(b) Now, let $0 \leq x_{1} \leq y_{1}$, and define recursively,

$$
x_{n+1}=\sqrt{x_{n} y_{n}}, y_{n+1}=\frac{x_{n}+y_{n}}{2} .
$$

Show that both $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$ exist and are equal.

