Assignment-0

(not to be handed in)

1. (De Morgan's laws) Let $\left\{A_{\alpha}\right\}_{\alpha \in I}$ be a collection of subsets of a larger set $\mathcal{B} . I$ is simply an indexing set, that could be finite or infinite.
(a) Show that

$$
\left(\cup_{\alpha \in I} A_{\alpha}\right)^{c}=\cap_{\alpha \in I} A_{\alpha}^{c}
$$

where for any subset $A, A^{c}=\mathcal{B} \backslash A$ is the complement.
(b) Show that

$$
\left(\begin{array}{ll}
\cap_{\alpha \in I} & A_{\alpha}
\end{array}\right)^{c}=\cup_{\alpha \in I} A_{\alpha}^{c}
$$

2. Decide which of the following statements are true and give a complete proof. For statements that are false provide a counter example.
(a) If $A_{1} \supseteq A_{2} \cdots$ are all sets containing an infinite number of elements, then $\cap_{n=1}^{\infty} A_{i}$ is also an infinite set.
(b) If $A_{1} \supseteq A_{2} \cdots$ are all finite non-empty sets of real numbers, then $\cap_{n=1}^{\infty} A_{i}$ is also finite and nonempty.
3. Use induction to prove the following.
(a) $1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) $1^{3}+2^{3}+\cdots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$. Note. This is rather beautiful, that the sum of first n cubes is equal to the square of the sum of the first n numbers.
(c) $11^{n}-4^{n}$ is always divisible by 7 .
(d) $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n}$.
4. Consider the inequality

$$
\frac{1}{1^{2}}+\frac{1}{2^{2}}+\cdots+\frac{1}{n^{2}} \leq 2
$$

By part(d) above, this is clearly true. But now try to prove the inequality directly by induction. Why does it not work?

