Math 115. Proof of the Existence of the Greatest-Integer Function

This handout will prove the following lemma mentioned in class:

Lemma. For each real number x there is a unique integer n such that

$$n \leq x < n+1.$$

Proof. This proof will rely on the following axiomatic properties.

Archimedean Property of the Real Numbers. For each $x \in \mathbb{R}$ there is an integer n with $n > x$.

Well-Ordering Property of the Natural Numbers. Every nonempty subset of \mathbb{N} has a smallest element.

Start by letting x be any real number. By the Archimedean Property applied to the real number $-x$, there is an $m \in \mathbb{Z}$ with $m > -x$, so $-m < x$.

Next let

$$S = \{ k \in \mathbb{N} : k - m > x \}.$$

Note that $0 \notin S$ because $-m < x$ (as noted above).

The set S is a subset of \mathbb{N} by construction, and is nonempty by the archimedean property applied to the real number $x + m$. Therefore, by the well-ordering property, it has a smallest element k. Since $k \in S$, $k - m > x$.

Since k is the smallest element of S, we have $k - 1 \notin S$. This can happen only if $k - 1 \notin \mathbb{N}$ or $k - 1 - m \leq x$. But $k - 1 \notin \mathbb{N}$ would imply $k < 1$, so $k = 0$, contradicting the fact that $0 \notin S$. Therefore $k - 1 - m \leq x$.

Thus, letting $n = k - 1 - m$, we have

$$n \leq x < n + 1,$$

as was to be shown. \[\Box\]