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[News Flash: The conjecture in this paper has been shown to be false. Coun-
terexamples have been found by Rob Lazarsfeld (based on Griffiths-Harris page 731; 6
February 2004), and independently by Paulo Cascini and Gabriele La Nave (based on
the Steiner vector bundle; 27 April 2004).]

§. Bigness
Throughout this talk, k is a field of characteristic zero, algebraically closed unless
otherwise specified.

A variety is an integral scheme, separated and of finite type over a field.
Throughout this talk, X is a complete variety over k .

Definition. Let L be a line sheaf on X . We say that L is big if there is a constant
c > 0 such that h0(X, L ⊗n) ≥ cndim X for all sufficiently large and divisible
n ∈ Z .

Lemma (Kodaira). Let L be a line sheaf and A an ample line sheaf on X . Then
L is big iff L ⊗n ⊗A ∨ has a (nonzero) global section for some n > 0 .

Proof. “ ⇐= ” is obvious.
“ =⇒ ”: Write A ∼= O(A1−A2) with A1 a reduced effective very ample divisor.

It will suffice to show that L ⊗n(−A1) has a global section for some n > 0 . Consider
the exact sequence

0 −→ H0(X, L ⊗n(−A1)) −→ H0(X, L ⊗n) −→ H0(A1,L
⊗n) .

The middle term has rank � ndim X , but the rightmost term has rank � ndim X−1 ,
for n � 0 divisible. �

Definition. A vector sheaf E of rank r on X is big if there is a c > 0 such that

h0(X, SnE ) ≥ cndim X+r−1

for all n � 0 divisible.

Equivalently, E is big iff O(1) on P(E ) is big.
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§. Essential base locus

Definition. Assume that X is projective, and let L be a (big) line sheaf on X . The
essential base locus of L is the subset⋂

n∈Z>0

(base locus of L ⊗n(−A) )

for any ample divisor A on X (it is independent of A ). The essential base locus
of a vector sheaf E on X is the set π(E) , where E is the essential base locus of
O(1) on P(E ) and π : P(E ) → X is the canonical morphism.

For line sheaves, the essential base locus is useful for the following reason: Let L
be a line sheaf on a projective variety X over a number field k , let B be the essential
base locus of L , and let A be an ample line sheaf on X . If one can show that
hL (x) ≤ o(hA (x)) for all x ∈ X(k) , then X(k) \B(k) is finite.

The essential base locus for vector sheaves occurs implicitly in the Ochiai-Green-
Griffiths proof of Bloch’s theorem in Nevanlinna theory, and it may prove useful in
number theory, too.

Question. If E is a big vector sheaf, is its essential base locus properly contained in
X ?

Answer. No. Example: Unstable E over curves.

Question. What if E is big and semistable?

§. Curves
Throughout this section, X is a (projective) curve.

Definition (Mumford). A vector sheaf E on X is semistable if, for all short exact
sequences

0 −→ E ′ −→ E −→ E ′′ −→ 0

of nontrivial vector sheaves on X ,

deg E ′

rank E ′ ≤
deg E

rank E

or (equivalently)
deg E ′′

rank E ′′ ≥
deg E

rank E
.

Theorem. Let E be a big semistable vector sheaf on X . Then E is ample (i.e., O(1)
is ample on P(E ) ). In particular, the essential base locus of E is empty.

Proof. By Kleiman’s criterion for ampleness, the sum of an ample and a nef divisor is
again ample, so by Kodaira’s lemma it suffices to show that if E is a semistable vector
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sheaf on X , then all effective divisors D on P(E ) are nef. This follows from ([M],
Thm. 3.1); a direct proof follows.

So, let D be an effective divisor and C a curve on P(E ) . We want to show:

(D . C) ≥ 0 .

Since E is semistable, so is
(
π
∣∣
C

)∗
E (proof later).

Therefore we may assume that C is a section of π , and that D is a prime divisor.
Since C is a section, it corresponds to a surjection E → L → 0 . Moreover,

L ∼= O(1)
∣∣
C

. By semistability, therefore,

(*) (O(1) . C) ≥ deg E

rank E
.

Now consider D . Let d be the degree of D on fibers of π ; d > 0 . Then
O(D) ∼= O(d) ⊗ π∗M for some M ∈ Pic X . Thus D corresponds to a section of
M ⊗ SdE , hence we have an injection

0 −→ OX −→ M ⊗ SdE

with locally free quotient.
Since E is semistable, so is SdE (proof later); hence

(**) deg(M ⊗ SdE ) ≥ 0

Let r = rankE ; then SdE has rank r′ :=
(
r+d−1

d

)
. The diagram

GLr(k) Sd

−−−−→ GLr′(k)ydet

ydet

k∗ −−−−−−−−→
x7→x(

r+d−1
d−1 )

k∗

commutes for all diagonal matrices, hence for all diagonalizable matrices, hence for all
matrices. Thus

deg(M ⊗ SdE ) = r′ deg M +
(

r + d− 1
d− 1

)
deg E

= r′ deg M +
d

r
r′ deg E

and therefore by (**),

deg M ≥ −d

r
deg E .

Thus by (*),

(D . C) = d(O(1) . C) + deg M ≥ d

r
deg E − d

r
deg E ≥ 0 .

�
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§. Higher Dimensional Varieties

Let X again be a complete variety of arbitrary dimension.

Construction. Given a vector sheaf E on X of rank r and a representation

ρ : GLr(k) → GLr′(k) ,

we can construct a vector sheaf E (ρ) on X of rank r′ by applying ρ to the
transition matrices of E . Equivalently, if E corresponds to ξ ∈ H1(X, GLr(OX)) ,
then ρ(ξ) ∈ H1(X, GLr′(OX)) corresponds to E (ρ) .

Examples of this include Sd , det , and ∧d .

Definition (Bogomolov). A vector sheaf E of rank r on X is unstable if there exists
a representation ρ : GLr(k) → GLr′(k) of determinant 1 (i.e., factoring through
PGLr(k) ) such that E (ρ) has a nonzero section that vanishes at at least one point.
It is semistable if it is not unstable.

Theorem (Bogomolov). If X is a curve, then Bogomolov’s definition of semistability
agrees with Mumford’s.

Remark. If ρ has determinant 1 then Im ρ ⊆ SLr′(k) , but not conversely.

Indeed, the representation GL1(k) → GL2(k) , z 7→
(

z 0
0 z−1

)
, has image con-

tained in SL2(k) but its does not factor through PGL1(k) .
To see that the (true) converse holds, first show that the vanishing of the deter-

minant defines an irreducible subset of kr2
; this is left as an exercise for the reader.

Now suppose that ρ : GLr(k) → GLr′(k) is a representation that factors through
PGLr(k) , and suppose also that its image is not contained in SLr′(k) . Then det ◦ρ
is a nonconstant regular function PGLr(k) → k∗ , hence it determines a nonconstant
rational function on Pr2

k with zeros and poles contained in {det = 0} . But the latter
is irreducible, so it can’t have both zeroes and poles there, contradiction.

So now we can pose:

Question. If X is a projective variety and E is a big, semistable vector sheaf on X ,
then is the essential base locus of E a proper subset of X ?

Remark. We can’t conclude that E is ample in the above, as the following example
illustrates. Let X be a projective variety of dimension > 1 , let E be a big semistable
vector sheaf on X of rank > 1 , let π : X ′ → X be the blowing-up of X at a closed
point, and let F be the exceptional divisor. Then the essential base locus of π∗E must
contain F .
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§. My Mitteljahrentraum
The question of an essential base locus being a proper subset comes up in Nevanlinna
theory, and I hope to be able to use it in number theory, as well. Here’s how.

Bogomolov has shown that Ω1
X is semistable for a smooth surface X . One would

hope to generalize this, to Ω1
X(log D) for a normal crossings divisor D on X , and also

to higher dimensions. Then it would suffice to prove that one of these bundles is big to
get arithmetical consequences.

Moreover, Bogomolov’s definition of semistability can be generalized to defining
semistability of higher jet bundles. These are not vector bundles, because they corre-
spond to elements of H1(X, G(OX)) for a group G other than GLn . But, one can
make the same definition, using those representations of G having the appropriate ker-
nel: k∗ again (Green-Griffiths), or a certain bigger group (Semple-Demailly). Probably
the latter.

Bigness is easy to define in this context, and then one hopefully can use the two
properties to talk about the exceptional base locus. Already the proof of Bloch’s theo-
rem in Nevanlinna theory can probably be recast in this mold.

§. Is Semistability Really Necessary?
The proof of the main theorem of this talk didn’t really need the full definition of
semistability; it only used the condition on the degrees of subbundles for subbundles
of rank 1 and corank 1. Would the following definition make sense, and would it be
preserved under pull-back and symmetric power?

Definition. Let X be a projective curve and let E be a vector sheaf of rank r on
X . Then E is ±1-semistable if the condition on degrees and ranks of subbundles
holds for all full subbundles E ′ of rank 1 and corank 1 .

Again, what would be a reasonable representation-theoretic formulation of this
definition?

§. Loose Ends
In the proof of the main theorem it remains to show that semistability is preserved
under pull-back and under taking Sd .

To show the first assertion, let f : X ′ → X be generically finite, and let E be a
semistable vector sheaf on X . Suppose that f∗E is unstable. Let ρ : GLr(k) → GL(V )
be a representation such that (f∗E )(ρ) has a nonzero global section that vanishes
somewhere. Let d = deg f . Then taking norms gives a global section of

Sd(E (ρ)) = E (Sd◦ρ)

with the same properties, contradiction.
The second assertion is proved similarly: suppose there is a representation

ρ : GL(Sd(kr)) → GL(V )
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with the required properties. Then ρ◦Sd gives a representation GLr → GL(V ) , leading
to a contradiction as before. It only remains to check that ρ ◦ Sd has determinant 1 .
This follows by commutativity of the following diagram:

GLr(k) Sd

−−−−→ GL′r(k)y y
PGLr(k) 99K PGL′r(k)

(here r′ is the rank of SdE ).
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