Math 254B. Homework #4
Due Wednesday 3 March, online

1. Let \(X \subseteq \mathbb{P}_Q^2 \times \mathbb{P}_Q^1 \) be the closed subscheme defined by \(x_0 y_1 = x_1 y_0 \), where \([x_0 : x_1 : x_2] \) and \([y_0 : y_1] \) are homogeneous coordinates on \(\mathbb{P}_Q^2 \) and \(\mathbb{P}_Q^1 \), respectively. Let \(\phi : X \to \mathbb{P}_Q^2 \) be the restriction of the canonical projection \(\mathbb{P}_Q^2 \times \mathbb{P}_Q^1 \to \mathbb{P}_Q^2 \), and let \(\psi : X \to \mathbb{P}_Q^5 \) be the composite function \(X \to \mathbb{P}_Q^2 \times \mathbb{P}_Q^1 \to \mathbb{P}_Q^5 \), where the second map is the Segre embedding

\[
([x_0 : x_1 : x_2], [y_0 : y_1]) \mapsto [x_0 y_0 : x_0 y_1 : x_1 y_0 : x_1 y_1 : x_2 y_0 : x_2 y_1].
\]

This map is also a closed embedding (you don’t need to prove this), and therefore so is \(\psi \). Therefore we regard \(X \) as a closed subscheme of \(\mathbb{P}_Q^5 \) via \(\psi \), and let \(h_Q(P) = h_Q(\psi(P)) \) for all \(P \in X(\mathbb{Q}) \).

Note that \(\phi \) is injective (at least on closed points), except over the point \([0 : 0 : 1]\), and that the fiber \(\phi^{-1}([0 : 0 : 1]) \) is isomorphic to \(\mathbb{P}_Q^1 \). The map \(\phi \) is called the **blowing-up of \(\mathbb{P}_Q^2 \) at the point \([0 : 0 : 1]\);** see Hartshorne I §4.

(a). Show that, for all \(P \in X(\mathbb{Q}) \),

\[
h_Q(\phi(P)) \leq h_Q(P) + O(1),
\]

where the implicit constant in \(O(1) \) is independent of \(P \).

(b). Show that the opposite inequality \(h_Q(P) \leq h_Q(\phi(P)) + O(1) \) is false, even for \(P \notin \phi^{-1}([0 : 0 : 1]) \).

2(NC). Let \(k \) be a number field or function field, and let \(f : X \to Y \) be a morphism of projective schemes over \(k \). Let \(\mathcal{M} \) be a line sheaf on \(Y \), and let \(\mathcal{L} = f^* \mathcal{M} \) be its pull-back to \(X \). Let \(h_{\mathcal{L}, k} \) be a height function for \(\mathcal{L} \) and \(k \) on \(X \).

For any given \(Q \in Y(k) \), we have \(\mathcal{L}|_{f^{-1}(Q)} \cong \mathcal{O}_{f^{-1}(Q)} \), so \(h_{\mathcal{L}, k} \) is bounded on \(f^{-1}(Q) \). These bounds cannot in general be taken to be independent of \(Q \), though, since usually \(h_{\mathcal{L}, k} \) is unbounded.

However, we also have \(h_{\mathcal{L}, k}(P_1) = h_{\mathcal{L}, k}(P_2) + O(1) \) for all \(P_1, P_2 \in f^{-1}(Q) \).

Show that this latter bound can be taken independent of \(Q \).

This problem will be graded, in part, on giving a proof that neatly addresses the reason why this is true (i.e., really “nails it”). (You will not be penalized for including more details, though.)

3. Let \(k \) be a field, let \(A_0 \) be the subring of \(k[x, y] \) generated by homogeneous polynomials of degree \(\neq 1 \), let \(A = (A_0)_{x-1} \), and let \(X = \text{Spec} A \).

(a). Show that \(X \) is a variety over \(k \) and is regular in codimension one.

(b). Show that \(X \) is not normal.

(c). Show that the divisor \((x-1)\) equals zero as a Weil divisor, but that \(x-1 \) is not a regular function on \(X \). (Note that \(x-1 \) is an element of \(K(X) = k(x, y) \).)