Math 254B. Homework #2
Due Wednesday 10 February, online

1. State and prove a variation of Roth’s theorem, in a style similar to one of the variants of Roth’s theorem in the second question on the first homework assignment, but with \(\alpha \in \mathbb{Q} \) and with a sharper inequality.

2. For nonzero \(a \in \mathbb{Q} \), the morphism \(\phi_a : \mathbb{P}^1_{\mathbb{Q}} \to \mathbb{P}^2_{\mathbb{Q}} \) given by

\[
[t : u] \mapsto [at^2 : tu : u^2]
\]

gives an isomorphism from \(\mathbb{P}^1_{\mathbb{Q}} \) to the curve \(X_a \subseteq \mathbb{P}^2_{\mathbb{Q}} \) defined by \(xz = ay^2 \). The heights of rational points are related by

\[
h_{\mathbb{Q}}(\phi_a(P)) = 2h_{\mathbb{Q}}(P) + O(1)
\]

for all \(P \in \mathbb{P}^1(\mathbb{Q}) \) (don’t worry about points rational over larger fields). Here the constant \(O(1) \) depends on \(a \). Determine upper and lower bounds for the \(O(1) \) term, as functions of \(a \in \mathbb{Q} \).