1. Verify that \(dc \) is a real operator, as follows. Let \(\Omega \subseteq \mathbb{C}^n \) be an open subset, and let \(f: \Omega \rightarrow \mathbb{C} \) be a differentiable function. Express \(dc_f \) in terms of \(\partial f / \partial x_i, \partial f / \partial y_i, dx_i, \) and \(dy_i \). (Do not use the expression for \(dc \) in polar coordinates.)

2. Let \(\mathcal{O}(1) \) denote the metrized line sheaf on \(\mathbb{P}^1_{\mathbb{C}} \) with Fubini-Study metric. Compute the arithmetic intersection number \((\mathcal{O}(1)^2) \). \[\textbf{Hint:} \text{ Compute } (D \cdot E) \text{ for suitable arithmetic divisors } D \text{ and } E. \]

3. Find a Green function \(g_\tau \) for the divisor consisting of the point \(P = \tau \) on \(\mathbb{P}^1_{\mathbb{C}} \) (where \(\tau \in \mathbb{A}^1 \subseteq \mathbb{P}^1 \)), subject to the conditions

\[
\begin{align*}
\quad \quad dd^c g_\tau &= \mu \quad \text{and} \quad \int g_\tau \mu = 0, \\
\text{where} \\
\quad \mu &= \frac{dd^c |z|^2}{(1 + |z|^2)^2}.
\end{align*}
\]

\[\text{Due Tuesday, 7 May} \]