1. Let k be a number field, a function field in one variable, or the completion of such a field at one of its given places. Let V be an affine variety over k, and let $i: V \hookrightarrow \mathbb{A}^n_k$ and $j: V \hookrightarrow \mathbb{A}^m_k$ be closed embeddings. Show that for all $c \in k^*$ there is a $c' \in k^*$ such that the set $\{P \in V(k) : P \text{ is integral with respect to } c' \cdot j\}$ contains the set $\{P \in V(\overline{k}) : P \text{ is integral with respect to } c \cdot i\}$.

2. Let k be a field as in the previous problem, let Y be as usual, let S be a finite set of places of k containing M_k^∞, and let V be a variety over k. For $i = 1, 2$ let V_i be a complete variety over k and let X_i be a proper model for V_i over Y such that there are compatible open embeddings $V \hookrightarrow V_i$ and $X \hookrightarrow X_i$ such that the complement of the image of X in X_i is the support of an effective Cartier divisor D_i on X_i. Let λ_i be the partial Weil function over $M_k \setminus S$ for D_i defined using models. You may assume that X_i is normal.

Without reference to integral points or sections of $X_i \rightarrow Y$ or curves in X_i, show that $\lambda_1(P) \leq 0 \iff \lambda_2(P) \leq 0$ for all $P \in V(M_k \setminus S)$ (i.e., for all $v \in M_k \setminus S$ and all $P \in V(\mathbb{C}_v)$).