1. Let k be a number field or a function field in one variable over a field F, and let Y be as defined in class for k. Let V be a variety over k, and let X_1 and X_2 be models for V over Y. Let \mathcal{L}_1 and \mathcal{L}_2 be line sheaves on X_1 and X_2, respectively, which agree on V. Show that \mathcal{L}_1 and \mathcal{L}_2 agree at almost all places of k; i.e., there is a nonempty open subscheme Y' of Y such that $X_1|_{Y'} = X_2|_{Y'}$ (compatible with the isomorphisms of their respective generic fibers with V), and such that the restrictions of \mathcal{L}_1 and \mathcal{L}_2 correspond under this isomorphism.

2. Let k be a number field, a function field in one variable, or the completion of one of these fields at one of their given places. Let $f: V \to W$ be a morphism of complete varieties over k. Let D be a Cartier divisor on V whose restriction to the generic fiber of f is effective, and let λ_D be a Weil function for D. Show that there is a proper birational morphism $g: W' \to W$, a Cartier divisor E on W', and a Weil function λ_E for E, with the following property. For all $P \in V(M)$ and $Q \in W'(M)$ satisfying $f(P) = g(Q)$, we have $\lambda_D(P) \geq \lambda_E(Q)$.

Edit: Since you haven’t covered blowings-up in Math 256 yet, you may assume that W is nonsingular. (Or, at your option, you may use the following fact. Let E be a proper closed subscheme of W. Then there is a proper birational morphism $g: W' \to W$ and an effective Cartier divisor E' on W' such that $g(\text{Supp} E') = E$ (as closed subsets of W). Here g is the blowing-up of W along E.)