1. Exercise 1 on page 58. You may use standard results on finite fields without proving them.

2(nc). Exercise 2 on page 58. You may use standard results on finite fields without proving them.

[Correction: The book should say \(q = \#\kappa(p) \), not \(q = [\kappa(\mathfrak{p}) : \kappa(p)] \).]

3. Let \(A, K, L, B \) and also \(A, K, M, C \) be as in the “usual picture,” with \(M \supseteq L \) and \(M \) Galois over \(K \). Let \(G = \text{Gal}(M/K) \) and let \(H < G \) be the subgroup corresponding to \(L \). Let \(Q \) be a prime of \(C \) and let \(q = Q \cap B \) and \(p = Q \cap A \). You may assume that the residue field extensions are separable, if necessary, but make it clear when you are using such assumptions.

(a). Express \(G_{Q/q} \) in terms of \(G_{Q/p} \) and \(H \).
(b). Assume that \(L \) is normal over \(K \). Express \(G_{q/p} \) in terms of \(G_{Q/p} \) and \(H \).
(c). Express the inertia group \(I_{Q/q} \) in terms of \(I_{Q/p} \) and \(H \).
(d). Assume that \(L \) is normal over \(K \). Express the inertia group \(I_{q/p} \) in terms of \(I_{Q/p} \) and \(H \).

Here the notation \(G_{Q/p} \) means the decomposition group of \(Q \) in \(\text{Gal}(M/K) \); and \(G_{Q/q}, G_{q/p} \), and corresponding inertia groups are defined analogously.

5. Let \(K = \mathbb{Q}(\mu_3) \) and let \(L = K(\sqrt[3]{2}) \). Determine how the primes \((2) \) and \((3) \) in \(\mathbb{Z} \) factor in \(K \) (including the ramification indices and inertia degrees). For each prime of \(\mathcal{O}_K \) over \(2 \) and \(3 \), determine how it factors in \(L \) (again, with ramification indices and inertia degrees).

You do not need to give generators for the ideals, just \(e \) and \(f \).