1. Do Exercise #7 on page 15.

2. Let \(K = \mathbb{Q}(\sqrt[7]{7}, \sqrt[10]{10}) \). We will show that \(\mathcal{O}_K \) is not of the form \(\mathbb{Z}[\alpha] \) for any \(\alpha \in \mathcal{O}_K \).

 Fix \(\alpha \in \mathcal{O}_K \), let \(f(x) = \text{Irr}_{\alpha, \mathbb{Q}}(x) \), and let \(F_3 = \mathbb{Z}/3\mathbb{Z} \). For each \(g \in \mathbb{Z}[x] \) let \(\bar{g} \) be the polynomial in \(F_3[x] \) obtained by reducing the coefficients mod 3.

 (a). Show that \(g(\alpha) \) is divisible by 3 in \(\mathbb{Z}[\alpha] \) if and only if \(\bar{g} \) is divisible by \(\bar{f} \) in \(F_3[x] \).

 (b). Now suppose \(\mathcal{O}_K = \mathbb{Z}[\alpha] \). Consider the four algebraic integers

 \[
 \begin{align*}
 \alpha_1 &= (1 + \sqrt[7]{7})(1 + \sqrt[10]{10}) \\
 \alpha_2 &= (1 + \sqrt[7]{7})(1 - \sqrt[10]{10}) \\
 \alpha_3 &= (1 - \sqrt[7]{7})(1 + \sqrt[10]{10}) \\
 \alpha_4 &= (1 - \sqrt[7]{7})(1 - \sqrt[10]{10}).
 \end{align*}
 \]

 Show that all products \(\alpha_i \alpha_j \) (\(i \neq j \)) are divisible by 3 in \(\mathbb{Z}[\alpha] \), but that 3 does not divide any power of any \(\alpha_i \). (Hint: show that \(\alpha_i^n/3 \) is not an algebraic integer by considering its trace: show that

 \[
 \text{Tr}_{K/\mathbb{Q}}(\alpha_i^n) = \alpha_1^n + \alpha_2^n + \alpha_3^n + \alpha_4^n
 \]

 and that this is congruent mod 3 (in \(\mathbb{Z}[\alpha] \)) to

 \[
 (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)^n = 4^n.
 \]

 Why does this imply that \(\text{Tr}_{K/\mathbb{Q}}(\alpha_i^n) \equiv 1 \pmod{3} \) in \(\mathbb{Z} \)?

 (c). Let \(\alpha_i = f_i(\alpha) \), \(f_i \in \mathbb{Z}[x] \) for each \(i = 1, 2, 3, 4 \). Show that \(\bar{f} \mid \bar{f}_i \bar{f}_j \) (\(i \neq j \)) in \(F_3[x] \) but \(\bar{f} \nmid \bar{f}_i^n \). Conclude that \(\bar{f} \) has an irreducible factor (over \(F_3 \)) which does not divide \(\bar{f}_i \) but which does divide all \(\bar{f}_j \), \(j \neq i \). (Recall that \(F_3[x] \) is a unique factorization domain.)

 (d). This shows that \(\bar{f} \) has at least four distinct irreducible factors over \(F_3 \). On the other hand \(\bar{f} \) has degree at most 4. Why is that a contradiction?