Math 254A. Homework 11
Due Wednesday, 8 November

1. Prove that \(\mathbb{Z}_p \) is compact.

2(NC). Exercise 7 on page 115.

3(NC). Determine the set \(\{ |a|_p : a \in \mathbb{Q}_p \} \). You may assume that the absolute value \(|\cdot|_p \) on \(\mathbb{Q}_p \) extends to a non-archimedean absolute value \(|\cdot|_p \) on \(\mathbb{Q}_p \).

4. Let \(K \) be a number field, let \(A \) be its ring of integers, let \(\overline{K} \) denote the algebraic closure of \(K \) (which is just \(\overline{\mathbb{Q}} \)), and let \(\overline{A} \) be the integral closure of \(A \) in \(\overline{K} \). Let \(p \) be a nonzero prime of \(A \). Show that there is a prime ideal \(q \) of \(\overline{A} \) with \(q \cap A = p \). Show also that \(q \) defines in a natural way a valuation \(v: \overline{K} \to \mathbb{Q} \cup \{ \infty \} \) such that \(v|_K = \text{ord}_p \), and that this valuation is not discrete.