1. Problem #5 on page 5.

2. Problem #1 on page 15.

3. Let A be a normal entire ring, let K be its field of fractions, and let $L \subseteq M$ be fields algebraic over K. Let B be the integral closure of A in L, let C be the integral closure of B in M, and let C' be the integral closure of A in M. Show that $C = C'$. (This shows that taking integral closure is transitive in towers of fields.)

4. Let $A \subseteq B$ be commutative rings, with B integral over A. Show that $B^* \cap A = A^*$.