
Synopsis of Class Field Theory

Roughly following Neukirch

Let K be a number field, and denote places of K by p .
For finite places p , let Op denote the valuation ring of Kp , and let

Up =


O∗p if p -∞,
R∗>0 ⊆ R∗ = Kp if p is real, and

K∗p if p is complex.

Then the group of idèles IK is the restricted direct product of K∗p with respect to the
subgroups Up . (This is not quite the book’s definition, due to differences at the real
places, but there are only finitely many of those, so in the end it makes no difference.)

We have K∗ ⊆ IK as a discrete subgroup (embedded diagonally).
For all finite sets S of places of K there are subgroups

ISK =
∏
p∈S

K∗p ×
∏
p/∈S

Up

of IK . If S ⊆ S′ then ISK ⊆ IS
′

K . Also IK =
⋃
ISK .

For n ∈ N we define subgroups of K∗p :

V
(n)
p =


K∗p if p is finite and n = 0,

1 + pnOp if p is finite and n > 0,

R∗>0 if p is real, and

K∗p if p is complex

and

U
(n)
p = V

(n)
p ∩ Up =


O∗p if p is finite and n = 0,

1 + pnOp if p is finite and n > 0,

R∗>0 if p is real, and

K∗p if p is complex.

These groups are open subgroups of Up of finite index, and every open subgroup of Up

contains U
(n)
p for sufficiently large n .

A module m of K is a nonzero ideal in OK . We often write m =
∏

pnp , and let
np = 0 for infinite p . If α = (αp)p and β are idèles, then we say that α ≡ β (mod+ m)

if αp/βp ∈ V
(np)
p for all p (this is only a restriction for finite p | m and for real places).

Let Jm
K be the group of fractional ideals of K prime to m , let Pm

K be the group

of principal fractional ideals of K generated by some x ∈ K with x ≡ 1 (mod+ m) ,
and let ClmK = Jm

K/P
m
K .
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The group of idèle classes is CK := IK/K
∗ .

There is a natural surjection IK � JK with kernel IS∞
K , so JK ∼= IK/I

S∞
K and

ClK ∼= IK/K
∗IS∞
K
∼= CK

/
(K∗IS∞

K /K∗) .

In the Arakelov context, we have a natural surjection IK � J(OK) with kernel

I0K =
∏
{αp ∈ K∗p : ‖αp‖p = 1} .

For an idèle α , we define its absolute norm N(α) =
∏
N(p)vp(αp) =

∏
‖αp‖−1p .

Since N(x) = 1 for all x ∈ K∗ , this descends to a well-defined continuous function on
CK , and we define C0

K = {α ∈ CK : N(α) = 1} . It is compact. Note that this is not
a similar definition to I0K .

We let ImK =
∏
U

(np)
p . Then Cm

K := K∗ImK/K
∗ is the congruence subgroup of

CK , and CK/C
m
K is the ray class group. We have CK/C

m
K
∼= ClmK .

Let L/K be a finite extension of number fields. We define a norm NL
K : IL → IK

by (
NL
Kα
)
p

=
∏
q|p

N
Lq

Kp
αq .

This map is continuous and has open image. It extends to a map CL → CK , also
denoted NL

K .
Let L/K be an abelian extension and let G = Gal(L/K) . For finite primes p

of K not ramifying in L , there is a well-defined Frobenius element σ ∈ G depending
only on p . We define the Artin symbol (p, L/K) to be this Frobenius element, and
extend this multiplicatively to all fractional ideals of K not involving ramified primes.

A module m is admissible for L/K if N
Lq

Kp
L∗q ⊇ U

(np)
p for all places p of K and all

(equivalently, at least one) q | p . It is a deep theorem that there exists an admissible
module involving only ramified primes.

If m is admissible for L/K , then it is known that CK/N
L
KCL

∼= Jm
K/P

m
KN

L
KJ

mOL

L ,
and that the Artin symbol is trivial on Pm

K . Therefore, the Artin symbol defines an
Artin map from CK to Gal(L/K) .

Theorem (Global Class Field Theory). Let K be a number field. Then:

(a). The map L 7→ NL
KCL induces an inclusion-reversing one-to-one correspon-

dence between finite abelian extensions L of K and open subgroups H of
CK (equivalently, closed subgroups of finite index).

(b). If L/K is finite abelian and H = NL
KCL , then the Artin map induces an

isomorphism CK/H
∼→ Gal(L/K) .

(c). If L and L′ are finite abelian over K and H and H ′ are the corresponding
subgroups of CK , then LL′ corresponds to H ∩H ′ and L∩L′ corresponds
to HH ′ .

(d). A finite place p of K is unramified in L if and only if H ⊇ K∗Up/K
∗

(where Up is embedded in IK by extending by 1’s at places other than p ).
(e). A (finite or infinite) place p of K splits completely in L if and only if

H ⊇ K∗K∗p/K∗ .


