
Math 254A. Absolute Values on Number Fields and Function Fields

This handout describes in more detail the situation with absolute values on number
fields and function fields of dimension 1 over an arbitrary field.

Throughout this handout, all function fields are assumed to be of dimension 1
(i.e., transcendence degree 1 ) over a field of constants F .

We start by showing how the construction of the completion of a valued field
behaves with respect to a field extension of valued fields.

Proposition 1. Let L/K be a finite extension of valued fields such that the absolute
value on L extends the absolute value on K . Then there is a commutative diagram

L
j−−−−→ L̂xφ xψ

K
i−−−−→ K̂

in which φ is the inclusion map and i and j are the maps constructed in Theorem

5a in the handout “Valued rings and valued fields.” Moreover, L̂ = j(L)ψ(K̂) .

Proof. Let i , j , and φ be as given. Then the existence of ψ such that the diagram
commutes follows from Theorem 5b of the earlier handout. We regard all of the fields

in the above diagram as valued subfields of L̂ , so that all of the maps in the diagram
are inclusion maps.

Now regard L as a vector space over K , and fix a basis. By II Prop. 4.9, a sequence
in L is Cauchy (in the absolute value on L ) if and only if all of the coordinate sequences

with respect to this basis are Cauchy, and therefore this basis spans L̂ as a vector space

over K̂ . This proves the last assertion. �

The following result was only partially proved in class (on 3 November).

Proposition 2. Let K be a field. Then the map

σ ∈ Hom(K,C) 7→ (|x| = |σ(x)| ∀ x ∈ K) (2.1)

determines a well-defined bijection from Hom(K,C)/(complex conjugation) to the
set of archimedean places of K .

Proof. Clearly a map σ : K → C and its complex conjugate determine the same ab-
solute value on K , and this absolute value is archimedean, so the map (2.1) is well
defined. It is surjective by a corollary of Ostrowski’s theorem from class (November 3).

It remains only to show that the map (2.1) is injective.
Let σ1, σ2 ∈ Hom(K,C) and assume that they are mapped to the same place of

K . It was proved in class on November 1 that if two absolute values | · |1 and | · |2
on a field are equivalent, then | · |1 = | · |s2 for some (fixed) s > 0 . Therefore we have
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|σ1(x)| = |σ2(x)|s for all x ∈ K . However, comparing the values at x = 2 gives that
s = 1 , so |σ1(x)| = |σ2(x)| for all x ∈ K .

Now for any given x ∈ K , we have |σ1(x)| = |σ2(x)| and |σ1(x−1)| = |σ2(x−1)| .
Therefore, comparing the triangle with vertices 0, 1, σ1(x) ∈ C with the triangle with
vertices 0, 1, σ2(x) ∈ C , we find that both triangles have the same side lengths, so

either σ1(x) = σ2(x) or σ1(x) = σ2(x) .
Now if σ1(K) ⊆ R , then by the above we also have σ2(K) ⊆ R , and therefore

σ1 = σ2 .
Hence we may assume that σ1(K) * R . Fix x ∈ K such that σ1(x) /∈ R . After re-

placing σ2 with its complex conjugate if necessary, we may assume that σ2(x) = σ1(x) .
Then we are done if σ1 = σ2 . If not, then there is some y ∈ K such that σ1(y) 6= σ2(y) .

Then we must have σ1(y) = σ2(y) . After replacing y with 1/y if necessary, we may
assume that the imaginary parts of σ1(x) and σ1(y) have the same sign. Then the

imaginary parts of σ2(x) = σ1(x) and σ2(y) = σ1(y) have different signs, so

|σ1(x− y)| = |σ1(x)− σ1(y)| < |σ1(x)− σ1(y)| = |σ2(x)− σ2(y)| = |σ2(x− y)| ,

a contradiction. Therefore we must have σ1 = σ2 . �

Corollary 3. Let K be a number field, and let ρ1, . . . , ρr, σ1, σ1, . . . , σs, σs be the
distinct embeddings of K into C . Then the distinct archimedean places of K
are represented by the pull-backs of the standard absolute value on C (or R ) via
ρ1, . . . , ρr, σ1, . . . , σs .

Proof. Immediate. �

Therefore, if L/K is an extension of number fields, then for any archimedean
place v of K , the set of places of L lying over v is nonempty and finite. Moreover,
by Corollary 8 in the earlier handout, all of these places (of L ) are archimedean.

If K is a function field with constant field F , then there are no archimedean abso-
lute values on K that restrict to the trivial absolute value on F , again by Corollary 8 of
the earlier handout (using the fact that the trivial absolute value is non-archimedean).

This says all that we intend to say in this handout about archimedean places, so
we now concentrate on non-archimedean places.

Lemma 4. Let L/K be an algebraic field extension. Then the only absolute value on
L that extends the trivial absolute value on K is the trivial absolute value on L .
(In other words, Theorem II 4.8 also holds if the absolute value on K is trivial;
note that every field K is complete with respect to the trivial absolute value.)

Proof. Let | · | be an absolute value on L that extends the trivial absolute value on
K . We shall show that | · | is also trivial on L .

Since the trivial absolute value on K is non-archimedean, the absolute value on
L is also non-archimedean (by Corollary 8 of the earlier handout).

We now claim that |α| ≤ 1 for all α ∈ L . Indeed, let α ∈ L and write

Irrα,K(X) = Xn + an−1X
n−1 + · · ·+ a0 .
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Then

|α|n = | − an−1αn−1 − an−2αn−2 − · · · − a0|
≤ max{|an−1||α|n−1, |an−2||α|n−2, . . . , |a0|}
≤ max{|α|n−1, 1} ,

which gives |α| ≤ 1 . But also, if α 6= 0 then |1/α| ≤ 1 , so we must have |α| = 1 .
Thus the absolute value on L must be trivial. �

We now consider the following result for extensions of valuations coming from
nonzero primes of Dedekind rings.

Lemma 5. Let L/K be a finite extension of number fields or of function fields over a
constant field F . If K and L are number fields, then let A = OK and B = OL ;
if they are function fields, then let A be a Dedekind ring of finite type over F
whose fraction field is K , and let B be the integral closure of A in L . Note
that in either case B is finite over A . Let | · | be an absolute value on L .
Assume that there exist a nonzero prime p of A and a constant C > 1 such that
|x| = C−νp(x) for all x ∈ K∗ . Then there is a prime ideal q of B lying over
p such that |x| = C−νq(x)/e for all x ∈ L∗ , where e = eq/K is the ramification
index.

Proof. This follows fairly easily from Exercise 6 on page 166 (which may appear on a
future homework assignment). Here we give a different proof, which applies only to
this case.

First consider the special case in which L/K is normal.
Let w : L∗ → R be the valuation on L defined by w(x) = − log |x| , and let

v = w
∣∣
K

be its restriction to K . Note that v(x) = νp(x) logC for all x ∈ K∗ .

Fix an algebraic closure Lw of Lw (hence of Kv ).
Choose a prime q0 of B lying over p , and let w0(x) = (νq0

(x)/eq0/K) logC for
all x ∈ L∗ . This is an extension of v to L , so by II Thm. 8.1 (i), there is an embedding
τ : L→ Lw over K such that w0 = w ◦ τ .

Since L is normal over K , the image of τ equals the image of the canonical
injection of L into Lw , so τ is an element of Gal(L/K) . Let q = τ(q0) . Since τ is
an automorphism of L over K , we have eq0/K = eq/K = e , and therefore

− log |x| = w(x) = w0(τ−1(x)) =
νq0

(τ−1(x))

e
logC =

ντ(q0)(x)

e
logC =

νq(x)

e
logC

for all x ∈ L∗ , as was to be shown.
For the general case, let L′ be a finite normal extension of K containing L ,

choose an extension of | · | to L′ , let B′ be the integral closure of B in L′ , and let q′

be a nonzero prime of B′ that satisfies the conditions of the lemma for L′/K . Then
the lemma for L/K follows by letting q = q′ ∩ L and applying multiplicativity of the
ramification index in towers. �



4

We are now able to prove the following generalization of II Prop. 3.7. (This result
is somewhat academic, however, since we usually take the set of places of a number
field to be a given.)

Theorem 6. Let K be a number field, and let | · | be a nontrivial non-archimedean
absolute value on K . Then there exist a prime p of K and a constant C > 1
such that |x| = C−vp(x) for all x ∈ K∗ . In particular, this defines a canonical
bijection between the set of non-archimedean places of K and the set of primes of
K .

Proof. By Lemma 4, the restriction of | · | to Q is nontrivial, so by II Prop. 3.7 it is
equivalent to | · |p for some rational prime p . By Lemma 5, there exist a prime ideal p
of OK lying over p and C > 1 that satisfy the condition of the theorem. Clearly any
two distinct primes p of K give inequivalent absolute values, hence distinct places,
and this gives the bijection. �

A similar result holds in the function field case, but proving it requires a result
similar to II Prop. 3.7.

Lemma 7. Let F be an arbitrary field, let K = F (t) (with t an indeterminate), and
let | · | be a nontrivial non-archimedean absolute value on K whose restriction to
F is trivial. Then there exist a prime p of either F [t] or F [1/t] (or both) and a
constant C > 1 such that |x| = C−vp(x) for all x ∈ K∗ .

Proof. After replacing t with 1/t if necessary, we may assume that |t| ≤ 1 . Let
A = F [t] . Then |x| ≤ 1 for all x ∈ A . Let p = {x ∈ A : |x| < 1} . Then (since | · |
is non-archimedean) p is a prime ideal in A . Also p 6= (0) (because | · | is nontrivial
and A generates K ). Therefore p = (π) for some irreducible π ∈ F [t] . We then
have |x| = |π|vp(x) for all nonzero x ∈ A , and therefore the same equation holds for
all x ∈ K∗ . �

Theorem 8. Let K be a function field with constant field F , and let t ∈ K be
transcendental over F (so that K is finite over F (t) ). Let | · | be a nontrivial
absolute value on K which is trivial on F . Then there exist (i) a nonzero prime
ideal p in the integral closure of either F [t] or F [1/t] in K and (ii) a constant
C > 1 , such that |x| = C−vp(x) for all x ∈ K∗ . In particular, this defines a
canonical bijection between the set of places of K trivial on F and the set of
closed points on the nonsingular projective curve over F with function field K .

Proof. By Lemma 4, the restriction of | · | to F (t) is nontrivial, so by Lemma 7 there
exist a prime ideal p0 of A , with A equal to either F [t] or F [1/t] , and C0 > 1 such

that |x| = C
−vp0

(x)
0 for all x ∈ F (t)∗ . Let B be the integral closure of A in K .

Then, by Lemma 5, there is a prime ideal p of B such that |x| = C−vp(x) for all

x ∈ K∗ , where C = C
1/e
0 and e = ep/p0

is the ramification index. Now (please forgive
the algebraic geometry) SpecB is an open affine subset of the curve mentioned in the
statement of the theorem, and p corresponds to a closed point of SpecB . With some
additional work in algebraic geometry, we obtain the required bijection. �


