Math 254A. Hensel's Lemma

Proposition. Let $K=(K,|\cdot|)$ be a complete non-archimedean valued field, let A be its valuation ring $\left\{a \in K||a| \leq 1\}\right.$, and let $f(x) \in A[x]$. Assume that $\alpha_{0} \in A$ satisfies

$$
\begin{equation*}
\left|f\left(\alpha_{0}\right)\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2} \tag{1}
\end{equation*}
$$

(where f^{\prime} is the derivative taken formally). Then the sequence defined by

$$
\alpha_{i+1}=\alpha_{i}-\frac{f\left(\alpha_{i}\right)}{f^{\prime}\left(\alpha_{i}\right)}, \quad i \in \mathbb{N}
$$

converges to a root α of f satisfying

$$
\begin{equation*}
\left|\alpha-\alpha_{0}\right| \leq \frac{\left|f\left(\alpha_{0}\right)\right|}{\left|f^{\prime}\left(\alpha_{0}\right)\right|}<1 \tag{2}
\end{equation*}
$$

This root is the only root of f satisfying (2); more generally it is the only root of f satisfying

$$
\begin{equation*}
\left|\alpha-\alpha_{0}\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right| . \tag{3}
\end{equation*}
$$

Proof. First we claim that if $\left|\alpha-\alpha_{0}\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|$ then $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(\alpha_{0}\right)\right|$. To see this, we first note that since $\alpha_{0} \in A$ and $f^{\prime}(x) \in A[x], f^{\prime}\left(\alpha_{0}\right) \in A$ and therefore also $\alpha \in A$. By Taylor's formula (for polynomials) there exists $\beta \in A$ such that

$$
f^{\prime}(\alpha)=f^{\prime}\left(\alpha_{0}\right)+\beta\left(\alpha-\alpha_{0}\right) .
$$

Thus

$$
\left|f^{\prime}(\alpha)-f^{\prime}\left(\alpha_{0}\right)\right| \leq\left|\alpha-\alpha_{0}\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|
$$

and therefore $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(\alpha_{0}\right)\right|$ by the non-archimedean property of the valuation. In particular, by (1), this holds for all α satisfying (2).

Now let $c=\left|f\left(\alpha_{0}\right)\right| /\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2}<1$. By induction we will show that, for all $i \geq 0$,
(i). $\left|\alpha_{i}-\alpha_{0}\right| \leq\left|f\left(\alpha_{0}\right)\right| /\left|f^{\prime}\left(\alpha_{0}\right)\right|<1$,
(ii). $\left|f^{\prime}\left(\alpha_{i}\right)\right|=\left|f^{\prime}\left(\alpha_{0}\right)\right|$, and
(iii). $\left|f\left(\alpha_{i}\right)\right| \leq c^{2^{i}}\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2}$.

The base case $i=0$ holds trivially.
For the inductive step, assume that (i)-(iii) hold for some value of i.
First, by (ii) and (iii) for i, we have

$$
\begin{equation*}
\left|\alpha_{i+1}-\alpha_{i}\right|=\frac{\left|f\left(\alpha_{i}\right)\right|}{\left|f^{\prime}\left(\alpha_{i}\right)\right|} \leq \frac{c^{2^{i}}\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2}}{\left|f^{\prime}\left(\alpha_{0}\right)\right|}=c^{2^{i}}\left|f^{\prime}\left(\alpha_{0}\right)\right| . \tag{4}
\end{equation*}
$$

Now we show (i) for $i+1$. By (4), the inequality $c<1$, and the definition of c,

$$
\left|\alpha_{i+1}-\alpha_{i}\right| \leq c^{2^{i}}\left|f^{\prime}\left(\alpha_{0}\right)\right| \leq c\left|f^{\prime}\left(\alpha_{0}\right)\right|=\frac{\left|f\left(\alpha_{0}\right)\right|}{\left|f^{\prime}\left(\alpha_{0}\right)\right|}
$$

Combining this with (i) for i then gives (i) for $i+1$.
To show (ii), we have

$$
\left|\alpha_{i+1}-\alpha_{0}\right| \leq \frac{\left|f\left(\alpha_{0}\right)\right|}{\left|f^{\prime}\left(\alpha_{0}\right)\right|}<\left|f^{\prime}\left(\alpha_{0}\right)\right|
$$

by (i) and (1). Therefore the claim applies, which gives (ii) for $i+1$.
Finally, we show (iii). By Taylor's formula, there exists $\beta \in A$ such that

$$
\begin{aligned}
f\left(\alpha_{i+1}\right) & =f\left(\alpha_{i}\right)+f^{\prime}\left(\alpha_{i}\right)\left(\alpha_{i+1}-\alpha_{i}\right)+\beta\left(\alpha_{i+1}-\alpha_{i}\right)^{2} \\
& =f\left(\alpha_{i}\right)+f^{\prime}\left(\alpha_{i}\right)\left(-\frac{f\left(\alpha_{i}\right)}{f^{\prime}\left(\alpha_{i}\right)}\right)+\beta\left(\alpha_{i+1}-\alpha_{i}\right)^{2} \\
& =\beta\left(\alpha_{i+1}-\alpha_{i}\right)^{2}
\end{aligned}
$$

Taking absolute values and applying (4) gives

$$
\left|f\left(\alpha_{i+1}\right)\right| \leq\left|\alpha_{i+1}-\alpha_{i}\right|^{2} \leq\left(c^{2^{i}}\left|f^{\prime}\left(\alpha_{0}\right)\right|\right)^{2}=c^{2^{i+1}}\left|f^{\prime}\left(\alpha_{0}\right)\right|^{2}
$$

This proves (iii) for $i+1$.
The sequence $\left(\alpha_{i}\right)$ therefore is a Cauchy sequence by (4). By continuity and (iii), its limit α is a root of f.

Finally, we prove the uniqueness statement. Suppose α and α^{\prime} are distinct roots of f satisfying (3). We then have $\left|\alpha-\alpha^{\prime}\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|$. But by Taylor's formula,

$$
f\left(\alpha^{\prime}\right)=f(\alpha)+f^{\prime}(\alpha)\left(\alpha^{\prime}-\alpha\right)+\beta\left(\alpha^{\prime}-\alpha\right)^{2}
$$

for some $\beta \in A$. Since $f(\alpha)=f\left(\alpha^{\prime}\right)=0$ and $\alpha \neq \alpha^{\prime}$, this gives

$$
\begin{gathered}
f^{\prime}(\alpha)=-\beta\left(\alpha^{\prime}-\alpha\right) \\
\left|f^{\prime}(\alpha)\right| \leq\left|\alpha^{\prime}-\alpha\right|<\left|f^{\prime}\left(\alpha_{0}\right)\right|
\end{gathered}
$$

This is a contradiction since the claim at the beginning of the proof implies that $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(\alpha_{0}\right)\right|$.

