
Math 254A. Hensel’s Lemma

Proposition. Let K = (K, | · |) be a complete non-archimedean valued field, let A be
its valuation ring {a ∈ K | |a| ≤ 1} , and let f(x) ∈ A[x] . Assume that α0 ∈ A
satisfies

|f(α0)| < |f ′(α0)|2 (1)

(where f ′ is the derivative taken formally). Then the sequence defined by

αi+1 = αi −
f(αi)

f ′(αi)
, i ∈ N

converges to a root α of f satisfying

|α− α0| ≤
|f(α0)|
|f ′(α0)|

< 1 . (2)

This root is the only root of f satisfying (2); more generally it is the only root of
f satisfying

|α− α0| < |f ′(α0)| . (3)

Proof. First we claim that if |α − α0| < |f ′(α0)| then |f ′(α)| = |f ′(α0)| . To see this,
we first note that since α0 ∈ A and f ′(x) ∈ A[x] , f ′(α0) ∈ A and therefore also
α ∈ A . By Taylor’s formula (for polynomials) there exists β ∈ A such that

f ′(α) = f ′(α0) + β(α− α0) .

Thus
|f ′(α)− f ′(α0)| ≤ |α− α0| < |f ′(α0)|

and therefore |f ′(α)| = |f ′(α0)| by the non-archimedean property of the valuation. In
particular, by (1), this holds for all α satisfying (2).

Now let c = |f(α0)|/|f ′(α0)|2 < 1 . By induction we will show that, for all i ≥ 0 ,

(i). |αi − α0| ≤ |f(α0)|/|f ′(α0)| < 1 ,
(ii). |f ′(αi)| = |f ′(α0)| , and

(iii). |f(αi)| ≤ c2
i |f ′(α0)|2 .

The base case i = 0 holds trivially.
For the inductive step, assume that (i)–(iii) hold for some value of i .
First, by (ii) and (iii) for i , we have

|αi+1 − αi| =
|f(αi)|
|f ′(αi)|

≤ c2
i |f ′(α0)|2

|f ′(α0)|
= c2

i

|f ′(α0)| . (4)

Now we show (i) for i+ 1 . By (4), the inequality c < 1 , and the definition of c ,

|αi+1 − αi| ≤ c2
i

|f ′(α0)| ≤ c|f ′(α0)| = |f(α0)|
|f ′(α0)|

.
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Combining this with (i) for i then gives (i) for i+ 1 .
To show (ii), we have

|αi+1 − α0| ≤
|f(α0)|
|f ′(α0)|

< |f ′(α0)| .

by (i) and (1). Therefore the claim applies, which gives (ii) for i+ 1 .
Finally, we show (iii). By Taylor’s formula, there exists β ∈ A such that

f(αi+1) = f(αi) + f ′(αi)(αi+1 − αi) + β(αi+1 − αi)
2

= f(αi) + f ′(αi)

(
− f(αi)

f ′(αi)

)
+ β(αi+1 − αi)

2

= β(αi+1 − αi)
2.

Taking absolute values and applying (4) gives

|f(αi+1)| ≤ |αi+1 − αi|2 ≤ (c2
i

|f ′(α0)|)2 = c2
i+1

|f ′(α0)|2 .

This proves (iii) for i+ 1 .
The sequence (αi) therefore is a Cauchy sequence by (4). By continuity and (iii),

its limit α is a root of f .
Finally, we prove the uniqueness statement. Suppose α and α′ are distinct roots

of f satisfying (3). We then have |α− α′| < |f ′(α0)| . But by Taylor’s formula,

f(α′) = f(α) + f ′(α)(α′ − α) + β(α′ − α)2

for some β ∈ A . Since f(α) = f(α′) = 0 and α 6= α′ , this gives

f ′(α) = −β(α′ − α);

|f ′(α)| ≤ |α′ − α| < |f ′(α0)| .

This is a contradiction since the claim at the beginning of the proof implies that
|f ′(α)| = |f ′(α0)| . �


