Math 254A. Valued Rings and Valued Fields (Preliminary)

This handout gives some basic definitions and results concerning valued rings and valued fields.

Definition 1. A valued ring is an ordered pair $(R, |\cdot|)$, where R is a ring and $|\cdot|$ is an absolute value on R. A homomomorphism $\phi: (R, |\cdot|_R) \to (S, |\cdot|_S)$ of valued rings is a ring homomorphism $\phi: R \to S$ such that $|\phi(r)|_S = |r|_R$ for all $r \in R$.

Note that all homomorphisms $\phi: (R, |\cdot|_R) \to (S, |\cdot|_S)$ of valued rings are injective, since if $r \in \ker \phi$ then $|r|_R = |\phi(r)|_S = 0$, which implies r = 0. As such, we may at times use the word **embedding** instead of homomorphism.

Definition 2. A valued ring $(R, |\cdot|)$ is archimedean or non-archimedean if its absolute value is archimedean or non-archimedean, respectively.

A valued ring $(R, |\cdot|)$ gives rise to a metric space, with metric d(x, y) = |x - y|. This in turn, provides a topology on R.

- **Definition 3.** A valued ring $(R, |\cdot|)$ is **complete** if its associated metric space is complete (i.e., all Cauchy sequences in R converge to a limit in R).
- **Definition 4.** A valued field is a valued ring $(K, |\cdot|)$ in which K is a field. A homomorphism of valued fields is a homomorphism of valued rings (whose domain and codomain are valued fields). A valued field is **archimedean**, **non-archimedean**, or **complete** if it has that property as a valued ring.

From now on, we will often write $(R, |\cdot|)$ as just R.

Theorem 5. Let $R = (R, |\cdot|)$ be a valued ring.

- (a). The valued ring R can be embedded as a dense subring of a valued ring $(\widehat{R}, |\cdot|^{\uparrow})$.
- (b). The complete valued ring (R̂, |·|[^]) from part (a) satisfies the following universal property. Every homomorphism ψ: R → S, with S complete, factors uniquely through a homomorphism ψ̂: R̂ → S of valued rings. In particular, R̂ (with the embedding R → R̂) is unique up to unique isomorphism.

Proof. If R is the trivial ring, then the result is also trivial (and is left as an exercise). Therefore we assume from now on that $R \neq (0)$.

(a). Let $R_0 = R^{\mathbb{N}}$ be the ring $R \times R \times \ldots$ of \mathbb{N} -indexed sequences in R, and let $R_1 \subseteq R_0$ be the subset of Cauchy sequences.

Claim. R_1 is a subring of R_0 .

Proof. A sum of two Cauchy sequences is Cauchy, and so is the negative of a Cauchy sequence; therefore R_1 is an additive subgroup of R_0 . The constant sequence (1, 1, ...) is Cauchy; therefore R_1 contains a unity element. Finally, the fact that R_1 is closed under multiplication follows from (i) all Cauchy sequences are bounded, and (ii)

$$|a_n b_n - a_m b_m| \le |a_n| |b_n - b_m| + |b_m| |a_n - a_m| .$$

This proves the claim.

Claim. Let $\mathfrak{q} = \{(a_n) \in R_1 : |a_n| \to 0 \text{ as } n \to \infty\}$. Then \mathfrak{q} is a prime ideal in R_1 .

Proof. It is easy to see that \mathfrak{q} is an additive subgroup of R_1 . To see that it is an ideal, let $a = (a_n)_{n \in \mathbb{N}} \in \mathfrak{q}$ and $b = (b_n)_{n \in \mathbb{N}} \in R_1$. Then the sequence $(a_n b_n)$ converges to zero because the sequence $(|b_n|)$ is bounded and $a_n \to 0$. Therefore \mathfrak{q} is an ideal in R_1 .

Finally, the ideal \mathfrak{q} is prime because the sequence (1, 1, ...) is not in \mathfrak{q} (trivially), and if $(a_n), (b_n) \notin q$ then the sequences $(|a_n|)$ and $(|b_n|)$ converge to nonzero real numbers, and therefore so does the sequence $(|a_nb_n|)$.

Now let $R = R_1/\mathfrak{q}$. It is an entire ring.

Let $a = (a_n) \in R_1$. Then $\lim_{n\to\infty} |a_n|$ converges (by the triangle inequality the sequence $(|a_n|)$ is a Cauchy sequence of real numbers). Also, if $a = (a_n)$ and $b = (b_n)$ are in R_1 and $a - b \in \mathfrak{q}$, then $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} |b_n|$, so $|a|^{\uparrow} := \lim_{n\to\infty} |a_n|$ is a well-defined function on \widehat{R} . It is easy to check that this satisfies the conditions for an absolute value on \widehat{R} , so $(\widehat{R}, |\cdot|^{\uparrow})$ is a valued ring.

Since constant sequences are Cauchy, $a \mapsto (a, a, ...)$ is a well-defined ring homomorphism $\phi_0: R \to R_1$. Let $\phi: R \to \hat{R}$ be the map corresponding to ϕ_0 . Then it is clear that $|\phi(a)|^{\widehat{}} = |a|$ for all $a \in R$, so ϕ is a homomorphism of valued rings.

Next, the image of ϕ is dense in \widehat{R} . Indeed, let $\alpha \in \widehat{R}$ be any element. We need to show that for all $\epsilon > 0$ there is an $a = a_{\epsilon} \in R$ such that $|\alpha - \phi(a)|^{2} \leq \epsilon$. To see this, lift α to a Cauchy sequence $(a_{0}, a_{1}, \ldots) \in R_{1}$. Pick $N = N_{\epsilon} \in \mathbb{N}$ such that $|a_{i} - a_{j}| \leq \epsilon$ for all $i, j \geq N$. In particular, $|a_{i} - a_{N}| \leq \epsilon$ for all $i \geq N$, so $|\alpha - \phi(a_{N})|^{2} = \lim_{i \to \infty} |a_{i} - a_{N}| \leq \epsilon$, as was to be shown.

Finally, we claim that \widehat{R} is complete. Indeed, let $(\alpha_0, \alpha_1, \ldots)$ be a Cauchy sequence in \widehat{R} . Given $n \in \mathbb{N}$, pick $N_n \in \mathbb{N}$ such that $|\alpha_i - \alpha_j|^{\sim} \leq 2^{-n}$ for all $i, j \geq N_n$, and pick $a_n \in R$ such that $|\alpha_{N_n} - \phi(a_n)|^{\sim} \leq 2^{-n}$. Then the sequence (a_0, a_1, \ldots) is Cauchy, because for all $n \leq m$ in \mathbb{N} ,

$$|a_n - a_m| = |\phi(a_n) - \phi(a_m)|^{\hat{}} \le |\phi(a_n) - \alpha_{N_n}|^{\hat{}} + |\alpha_{N_n} - \alpha_{N_m}|^{\hat{}} + |\alpha_{N_m} - \phi(a_m)|^{\hat{}} \le 2^{-n} + 2^{-n} + 2^{-m} \le 3 \cdot 2^{-n} .$$

Therefore this sequence defines an element $\alpha \in \widehat{R}$. Also $\lim_{i\to\infty} \alpha_i = \alpha$ (in \widehat{R}), because for all $n \ge 0$ and all $i \ge \max\{n, N_n\}$,

$$\begin{aligned} |\alpha_i - \alpha|^{\widehat{}} &\leq |\alpha_i - \alpha_{N_m}|^{\widehat{}} + |\alpha_{N_m} - \phi(a_n)|^{\widehat{}} + \lim_{j \to \infty} (|\phi(a_n) - \phi(a_j)|^{\widehat{}} + |\phi(a_j) - \alpha)|^{\widehat{}}) \\ &\leq 2^{-n} + 2^{-n} + \lim_{j \to \infty} |\phi(a_n) - \phi(a_j)|^{\widehat{}} + \lim_{j \to \infty} |\phi(a_j) - \alpha)|^{\widehat{}} \\ &\leq 2^{-n} + 2^{-n} + 3 \cdot 2^{-n} + 0 = 5 \cdot 2^{-n} . \end{aligned}$$

Thus $(\hat{R}, |\cdot|^{\uparrow})$ is complete, so (a) is proved.

(b). Exercise (for now).

 $\mathbf{2}$

##