Math 254A. Valued Rings and Valued Fields

This handout gives some basic definitions and results concerning valued rings and valued fields.

Definition 1. A valued ring is an ordered pair $(R, |\cdot|)$, where R is a ring and $|\cdot|$ is an absolute value on R. A homomomorphism $\phi: (R, |\cdot|_R) \to (S, |\cdot|_S)$ of valued rings is a ring homomorphism $\phi: R \to S$ such that $|\phi(r)|_S = |r|_R$ for all $r \in R$.

Note that all homomorphisms $\phi: (R, |\cdot|_R) \to (S, |\cdot|_S)$ of valued rings are injective, since if $r \in \ker \phi$ then $|r|_R = |\phi(r)|_S = 0$, which implies r = 0. As such, we may at times use the word **embedding** instead of homomorphism.

Definition 2. A valued ring $(R, |\cdot|)$ is archimedean or non-archimedean if its absolute value is archimedean or non-archimedean, respectively.

A valued ring $(R, |\cdot|)$ gives rise to a metric space, with metric d(x, y) = |x - y|. This in turn, provides a topology on R.

- **Definition 3.** A valued ring $(R, |\cdot|)$ is **complete** if its associated metric space is complete (i.e., all Cauchy sequences in R converge to a limit in R).
- **Definition 4.** A valued field is a valued ring $(K, |\cdot|)$ in which K is a field. A homomorphism of valued fields is a homomorphism of valued rings (whose domain and codomain are valued fields). A valued field is archimedean, non-archimedean, or complete if it has that property as a valued ring.

From now on, we will often write $(R, |\cdot|)$ as just R.

Theorem 5. Let $R = (R, |\cdot|)$ be a valued ring.

- (a). The valued ring R can be embedded as a dense subring of a complete valued ring $(\hat{R}, |\cdot|^{\uparrow})$.
- (b). Embeddings R → R of a valued ring R into a complete valued ring R with dense image satisfy the following universal property. Every homomorphism ψ: R → S of valued rings, with S complete, factors uniquely through a homomorphism ψ̂: R → S of valued rings. As a consequence, embeddings R → R, with R complete and with dense image, are unique up to unique isomorphism.

Proof. If R is the trivial ring, then the result is also trivial (and is left as an exercise). Therefore we assume from now on that $R \neq (0)$.

(a). Let $R_0 = R^{\mathbb{N}}$ be the ring $R \times R \times ...$ of \mathbb{N} -indexed sequences in R, and let $R_1 \subseteq R_0$ be the subset of Cauchy sequences.

Claim. R_1 is a subring of R_0 .

Proof. A sum of two Cauchy sequences is Cauchy, and so is the negative of a Cauchy sequence; therefore R_1 is an additive subgroup of R_0 . The constant sequence (1, 1, ...)

is Cauchy; therefore R_1 contains a unity element. Finally, the fact that R_1 is closed under multiplication follows from (i) all Cauchy sequences are bounded, and (ii)

$$|a_n b_n - a_m b_m| \le |a_n| |b_n - b_m| + |b_m| |a_n - a_m|$$

This proves the claim.

Claim. Let $\mathbf{q} = \{(a_n) \in R_1 : |a_n| \to 0 \text{ as } n \to \infty\}$. Then \mathbf{q} is a prime ideal in R_1 . *Proof.* It is easy to see that \mathbf{q} is an additive subgroup of R_1 . To see that it is an ideal, let $a = (a_n)_{n \in \mathbb{N}} \in \mathbf{q}$ and $b = (b_n)_{n \in \mathbb{N}} \in R_1$. Then the sequence $(a_n b_n)$ converges to zero because the sequence $(|b_n|)$ is bounded and $a_n \to 0$. Therefore \mathbf{q} is an ideal in R_1 .

Finally, the ideal \mathfrak{q} is prime because the sequence (1, 1, ...) is not in \mathfrak{q} (trivially), and if $(a_n), (b_n) \notin q$ then the sequences $(|a_n|)$ and $(|b_n|)$ converge to nonzero real numbers, and therefore so does the sequence $(|a_nb_n|)$.

Now let $\widehat{R} = R_1/\mathfrak{q}$. It is an entire ring.

Let $a = (a_n) \in R_1$. Then $\lim_{n\to\infty} |a_n|$ converges (by the triangle inequality the sequence $(|a_n|)$ is a Cauchy sequence of real numbers). Also, if $a = (a_n)$ and $b = (b_n)$ are in R_1 and $a - b \in \mathfrak{q}$, then $\lim_{n\to\infty} |a_n| = \lim_{n\to\infty} |b_n|$, so $|a|^{\uparrow} := \lim_{n\to\infty} |a_n|$ is a well-defined function on \widehat{R} . It is easy to check that this satisfies the conditions for an absolute value on \widehat{R} , so $(\widehat{R}, |\cdot|^{\uparrow})$ is a valued ring.

Since constant sequences are Cauchy, $a \mapsto (a, a, ...)$ is a well-defined ring homomorphism $\phi_0: R \to R_1$. Let $\phi: R \to \hat{R}$ be the map corresponding to ϕ_0 . Then it is clear that $|\phi(a)|^{\hat{}} = |a|$ for all $a \in R$, so ϕ is a homomorphism of valued rings.

Next, the image of ϕ is dense in \widehat{R} . Indeed, let $\alpha \in \widehat{R}$ be any element. We need to show that for all $\epsilon > 0$ there is an $a = a_{\epsilon} \in R$ such that $|\alpha - \phi(a)|^{\widehat{}} \leq \epsilon$. To see this, lift α to a Cauchy sequence $(a_0, a_1, \ldots) \in R_1$. Pick $N = N_{\epsilon} \in \mathbb{N}$ such that $|a_i - a_j| \leq \epsilon$ for all $i, j \geq N$. In particular, $|a_i - a_N| \leq \epsilon$ for all $i \geq N$, so $|\alpha - \phi(a_N)|^{\widehat{}} = \lim_{i \to \infty} |a_i - a_N| \leq \epsilon$, as was to be shown.

Finally, we claim that \widehat{R} is complete. Indeed, let $(\alpha_0, \alpha_1, \ldots)$ be a Cauchy sequence in \widehat{R} . Given $n \in \mathbb{N}$, pick $N_n \in \mathbb{N}$ such that $|\alpha_i - \alpha_j|^{\sim} \leq 2^{-n}$ for all $i, j \geq N_n$, and pick $a_n \in R$ such that $|\alpha_{N_n} - \phi(a_n)|^{\sim} \leq 2^{-n}$. Then the sequence (a_0, a_1, \ldots) is Cauchy, because for all $n \leq m$ in \mathbb{N} ,

$$|a_n - a_m| = |\phi(a_n) - \phi(a_m)|^{\hat{}} \le |\phi(a_n) - \alpha_{N_n}|^{\hat{}} + |\alpha_{N_n} - \alpha_{N_m}|^{\hat{}} + |\alpha_{N_m} - \phi(a_m)|^{\hat{}} \le 2^{-n} + 2^{-n} + 2^{-m} \le 3 \cdot 2^{-n} .$$

Therefore this sequence defines an element $\alpha \in \widehat{R}$. Also $\lim_{i\to\infty} \alpha_i = \alpha$ (in \widehat{R}), because for all $n \ge 0$ and all $i \ge \max\{n, N_n\}$,

$$\begin{aligned} |\alpha_i - \alpha|^{\hat{}} &\leq |\alpha_i - \alpha_{N_m}|^{\hat{}} + |\alpha_{N_m} - \phi(a_n)|^{\hat{}} + \lim_{j \to \infty} \left(|\phi(a_n) - \phi(a_j)|^{\hat{}} + |\phi(a_j) - \alpha)|^{\hat{}} \right) \\ &\leq 2^{-n} + 2^{-n} + \lim_{j \to \infty} |\phi(a_n) - \phi(a_j)|^{\hat{}} + \lim_{j \to \infty} |\phi(a_j) - \alpha)|^{\hat{}} \\ &\leq 2^{-n} + 2^{-n} + 3 \cdot 2^{-n} + 0 = 5 \cdot 2^{-n} . \end{aligned}$$

Thus $(\widehat{R}, |\cdot|^{\uparrow})$ is complete, so (a) is proved.

(b). First of all, note that all homomorphisms of valued rings are continuous (relative to the topologies on their domains and codomains defined by the absolute value).

Now let $\phi: R \to \widehat{R}$ and $\psi: R \to S$ be homomorphisms of valued rings. Assume that \widehat{R} and S are complete and that ϕ has dense image.

We first construct $\widehat{\psi}$. Let $\alpha \in \widehat{R}$. Since ϕ has dense image, there is a sequence (a_0, a_1, \ldots) of elements of R such that $(\phi(a_0), \phi(a_1), \ldots)$ converges to α . The latter sequence is Cauchy, and therefore so are the sequences (a_0, a_1, \ldots) and $(\psi(a_0), \psi(a_1), \ldots)$ (in R and S, respectively). Since S is complete, the latter sequence converges to a limit $\beta \in S$.

We claim that this element β is independent of the choice of $(a_0, a_1, ...)$. Indeed, let $(b_0, b_1, ...)$ be another sequence of elements of R such that $(\phi(b_0), \phi(b_1), ...)$ converges to α . Then $\lim_{i\to\infty} |\phi(a_i) - \phi(b_i)| = 0$, which implies $\lim_{i\to\infty} |a_i - b_i| = 0$, and therefore $\lim_{i\to\infty} |\psi(a_i) - \psi(b_i)| = 0$. Therefore $\lim_{i\to\infty} \psi(b_i) = \beta$ also.

Thus, we let $\widehat{\psi}(\alpha) = \beta$. It is easy to check that ψ is a ring homomorphism. For example, let $\alpha, \beta \in \widehat{R}$, and let (a_0, a_1, \ldots) and (b_0, b_1, \ldots) be sequences of elements of R such that $(\phi(a_0), \phi(a_1), \ldots)$ and $(\phi(b_0), \phi(b_1), \ldots)$ converge to α and β , respectively. Then $(\phi(a_0b_0), \phi(a_1b_1), \ldots)$ converges to $\alpha\beta$, and

$$\widehat{\psi}(\alpha\beta) = \lim_{n \to \infty} \psi(a_n b_n) = \lim_{n \to \infty} \psi(a_n)\psi(b_n)$$
$$= \left(\lim_{n \to \infty} \psi(a_n)\right) \left(\lim_{n \to \infty} \psi(b_n)\right) = \widehat{\psi}(\alpha)\widehat{\psi}(\beta)$$

We then have that $\psi = \hat{\psi} \circ \phi$, because the constant sequence $(\phi(a), \phi(a), \dots)$ converges to $\phi(a)$, and therefore

$$\widehat{\psi}(\phi(a)) = \lim_{i \to \infty} \psi(a) = \psi(a) \quad \text{for all } a \in R$$

Finally, to show uniqueness, suppose that $\tilde{\psi}: \hat{R} \to S$ is another homomorphism of valued rings such that $\tilde{\psi} \circ \phi = \psi$. Then $\hat{\psi}$ and $\tilde{\psi}$ are continuous functions from \hat{R} to S. Since they coincide on the dense subset $\phi(R)$ of \hat{R} , they must be equal. \Box

Proposition 6. If K is a valued field, then \hat{K} is also a (valued) field.

Proof. Let $\alpha \in K^*$, and let $(a_0, a_1, ...)$ be a Cauchy sequence in K that converges to α . There is some N such that $|a_i - \alpha| < |\alpha|$ for all $i \ge N$, and therefore the sequence $(1/a_N, 1/a_{N+1}, ...)$ is a Cauchy sequence in K whose limit $\beta \in \widehat{K}$ satisfies $\alpha\beta = 1$.

Proposition 7. Let $R = (R, |\cdot|)$ be a valued ring. Then the following are equivalent.

- (i). R is non-archimedean;
- (ii). $|n| \leq 1$ for all $n \in \mathbb{N}$; and
- (iii). the set $\{|n| : n \in \mathbb{N}\}$ is bounded.

 $\begin{array}{l} \textit{Proof.} \ (\mathrm{i}) \implies (\mathrm{ii}) \text{ is true by induction, and (ii)} \implies (\mathrm{iii}) \text{ is trivial. For (iii)} \implies (\mathrm{i}),\\ \text{assume that } |n| \leq L \ \text{for all} \ n \in \mathbb{N} \,. \ \text{Then, for all} \ n \geq 0 \ \text{and all} \ x, y \in R \,, \end{array}$

$$|x+y|^n = \left|\sum_{i=0}^n \binom{n}{i} x^i y^{n-i}\right| \le \sum_{i=0}^n \left|\binom{n}{i}\right| \max\{|x|, |y|\}^n \le (n+1)L \max\{|x|, |y|\}^n .$$

Taking *n* large and noting that $\lim_{n \to \infty} \sqrt[n]{(n+1)L} = 1$ then gives $|x+y| \le \max\{|x|, |y|\}$, so $|\cdot|$ is non-archimedean.

Corollary 8. Let $\phi: R \to S$ be a homomorphism of valued rings. If R is archimedean, or non-archimedean, then S has that same property.

Proof. Indeed, this follows from the equivalence (i) \iff (iii) of Proposition 7.