1. Give (separate) examples of a Noetherian ring R, a Noetherian R-module M, and a primary decomposition of a submodule M' of M such that:
 (a). Some M_i is P_i-primary with $P_i \notin \text{Ass}(M/M')$;
 (b). The primary decomposition is irredundant but not minimal (hint: $k[x,y]$).

2. Let k be a field. Let

 $R = \left\{ \sum_{i,j \in \mathbb{N}} a_{ij} x^i y^j : a_{01} = 0 \right\}$

 be the ring given in class on Friday, 6 March, with ideals

 $P = (xy, y^2, y^3)$ and $I = P^2 = (x^2 y^2, xy^4, y^5)$.

 Recall that $\sqrt{I} = P$ is prime but that I is not primary. The object of this problem is to compute a primary decomposition for I in R.
 (a). Prove that $(0) \notin \text{Ass}_R(R/I)$.
 (b). Prove that P is minimal over $\text{Ann}(R/I)$.
 (c). Find $m \in R/I$ such that $\text{Ann} m = P$.
 (d). Find the P-primary part of 0 in R/I.
 (e). Prove that $\text{Ass}(R/I) = \{P, M_1, \ldots, M_r\}$, where M_1, \ldots, M_r are maximal ideals in R, with $r \geq 1$. For this part you may assume without proof that all prime ideals of R strictly containing P are maximal.
 (f). Finish finding a primary decomposition of I.