1(nc). A topological space is **irreducible** if it is nonempty and cannot be written as a union of two proper closed subsets. A subset of a topological space is **irreducible** if it is irreducible as a topological space (with the induced topology). Show that a Noetherian topological space is a finite union of irreducible subsets.

2. Let R be a ring.

 (a). Show that $\text{Spec } R$ is quasi-compact (i.e., for any open cover of $\text{Spec } R$, there is a finite subcover).

 (b). Show that if R is Noetherian then every open subset of $\text{Spec } R$ is quasi-compact.

 (c). Give an example of a ring R and an open subset of $\text{Spec } R$ that is not quasi-compact.

3. Exercise 3.18 (page 114).

 Note that starred exercises have hints in the back of the book. They will be graded on the assumption that you have read those hints.