Math 115. A Rephrased Theorem 3.10

This handout gives a more detailed variant of Theorem 3.10.

Theorem. Let

$$f(x,y) = ax^2 + bxy + cy^2$$

be a nonzero binary quadratic form with integer coefficients, and let $d = b^2 - 4ac$ be its discriminant.

- (a). If d is a perfect square (including 0), then f can be factored into two linear factors with integer coefficients (note Exercise 9).
- (b). If d is not a perfect square, then f cannot be factored into linear factors with rational coefficients.

Proof. (a). Assume that d is a perfect square.

Case I: a = 0. Then $f(x, y) = bxy + cy^2 = (bx + cy)y$ can be factored, and $d = b^2$ is a perfect square.

Case II: $a \neq 0$. By algebra we know that $az^2 + bz + c$ has rational roots r_1 and r_2 (possibly equal), so $f(x, y) = a(x - r_1 y)(x - r_2 y)$. Write $r_1 = h_1/k_1$ and $r_2 = h_2/k_2$ as fractions in lowest terms. Then

$$f(x,y) = \frac{a}{k_1 k_2} (k_1 x - h_1 y) (k_2 x - h_2 y) ,$$

where

$$\frac{a}{k_1k_2}(-k_1h_2 - h_1k_2) = b \in \mathbb{Z} \quad \text{and} \quad \frac{a}{k_1k_2}h_1h_2 = c \in \mathbb{Z}.$$

It will suffice to show that $k_1k_2 \mid a$, since then $\frac{a}{k_1k_2} \in \mathbb{Z}$, and the factor $\frac{a}{k_1k_2}(k_1x-h_1y)$ has integer coefficients.

Let p be a prime and let α, β be such that $p^{\alpha} \parallel k_1$ and $p^{\beta} \parallel k_2$. We want to show that $p^{\alpha+\beta} \mid a$.

Case IIa: $p \mid h_1$ and $p \mid h_2$. Then $\alpha = \beta = 0$, so there is nothing to prove.

Case IIb: $p \nmid h_1$ and $p \nmid h_2$. Since $c \in \mathbb{Z}$, we have $k_1k_2 \mid ah_1h_2$, hence $p^{\alpha+\beta} \mid ah_1h_2$. This implies $p^{\alpha+\beta} \mid a$ (since $p \nmid h_1h_2$), so we are done.

Case II: $p \mid h_1$ **but** $p \nmid h_2$. Then $p \nmid k_1$, so $p \nmid k_1h_2$. But $p \mid h_1k_2$, so $p \nmid (-k_1h_2 - h_1k_2)$, therefore (since $b \in \mathbb{Z}$) $k_1k_2 \mid a(-k_1h_2 - h_1k_2)$, and therefore $p^{\alpha+\beta} \mid a(-k_1h_2 - h_1k_2)$, so $p^{\alpha+\beta} \mid a$.

Case IId: $p \nmid h_1$ **but** $p \mid h_2$. This is similar to Case IIc (interchange the indices 1 and 2).

Therefore f factors into linear factors with integer coefficients.

(b). We will prove the contrapositive: If f can be factored into linear factors with rational coefficients, then d is a perfect square.

First, if a = 0 then $d = b^2$ is a perfect square.

Otherwise, by assumption $f(x,y) = (k_1x+h_1y)(k_2x+h_2y)$ with $k_1, h_1, k_2, h_2 \in \mathbb{Q}$, and $k_1k_2 \neq 0$ since $a \neq 0$. Therefore the quadratic polynomial az^2+bz+c has rational roots $-h_1/k_1$ and $-h_2/k_2$, so $\sqrt{d} \in \mathbb{Q}$. As was noted earlier (in class on September 10), this implies that the integer $d = b^2 - 4ac$ is the square of an integer. \Box