Math 115. Slides from the Lecture of September 29

This handout contains the slides from the lecture of September 29 (with a more complete Division Algorithm).

Polynomials with Coefficients in \(\mathbb{C} \)

The main line of today’s class will mimic the following statements and proofs for polynomials with coefficients in \(\mathbb{C} \) (or \(\mathbb{R} \) or \(\mathbb{Q} \)).

Definition. \(\mathbb{C}[x] \) is the set of polynomials with coefficients in \(\mathbb{C} \). \(\mathbb{R}[x] \) and \(\mathbb{Q}[x] \) are defined analogously.

We prove here that a nonzero polynomial in \(\mathbb{C}[x] \) of degree \(n \) has at most \(n \) roots (in \(\mathbb{C} \)). (In fact, it has exactly \(n \) roots, when counted with multiplicities, but this will not be proved for congruences modulo \(p \).)

For the rest of today’s class, we will use the convention that the zero polynomial in \(\mathbb{C}[x] \) has degree \(-\infty \).

Theorem (Division Algorithm for Polynomials in \(\mathbb{C}[x] \)). Let \(f, g \in \mathbb{C}[x] \) with \(g \neq 0 \). Then there are polynomials \(q, r \in \mathbb{C}[x] \) such that \(f(x) = q(x)g(x) + r(x) \) and \(\deg r < \deg g \). Also, \(q \) and \(r \) are unique with these properties.

Proof.

Existence. Long division of polynomials.

Uniqueness. Suppose that \(q_2, r_2 \in \mathbb{C}[x] \) also satisfy \(f(x) = q_2(x)g(x) + r_2(x) \) and \(\deg r_2 < \deg g \). Then

\[
 r(x) - r_2(x) = (q_2(x) - q(x))g(x) .
\]

But now the left-hand side has degree < \(\deg g \), and the only way this can happen is for the factor \(q_2 - q \) to be zero. Therefore \(q_2 = q \). Therefore the left-hand side of (*) must be zero, so \(r_2 = r \) also. This gives uniqueness. \(\square \)

Corollary. Let \(f \in \mathbb{C}[x] \) and \(a \in \mathbb{C} \). Then \(a \) is a root of \(f \) (i.e., \(f(a) = 0 \)) if and only if \((x - a) | f \) (i.e., \(f(x) = (x - a)g(x) \) for some \(g \in \mathbb{C}[x] \)).

Proof. Write \(f(x) = (x - a)g(x) + r(x) \) with \(\deg r < 1 \). Then \(r \) is a constant \(c \), and substituting \(x = a \) gives \(f(a) = (a - a)g(a) + c = c \) (because \(a - a = 0 \)), so \(f(a) = c \). Therefore

\[
 f(a) = 0 \iff c = 0 \iff (x - a) | f .
\]

Corollary. If \(f \in \mathbb{C}[x] \) and \(a_1, \ldots, a_r \in \mathbb{C} \) are distinct roots of \(f \) (with \(r > 0 \)), then writing \(f(x) = (x - a_1)g(x) \), we have that \(a_2, \ldots, a_r \) are distinct roots of \(g \).

Proof. Exercise. \(\square \)