Math 115. Slides from the Lecture of October 3

This handout contains the slides from the lecture of October 3.

\S **2.7.** Prime Modulus

The first sentence of Section 2.7 reads,

"We have now reduced the problem of solving $f(x) \equiv 0 \pmod{m}$ to its last stage, congruences with prime moduli."

Well, not quite ... (what if $f'(a) \equiv 0 \pmod{p}$?). But, we proceed.

We'll start by reviewing some facts about polynomials with coefficients in $\,\mathbb C\,$ or $\mathbb R\,.$

Polynomials with Coefficients in \mathbb{C}

The main line of today's class will mimic the following statements and proofs for polynomials with coefficients in \mathbb{C} (or \mathbb{R} or \mathbb{Q}).

Definition. $\mathbb{C}[x]$ is the set of polynomials with coefficients in \mathbb{C} . $\mathbb{R}[x]$ and $\mathbb{Q}[x]$ are defined analogously.

We prove here that a nonzero polynomial in $\mathbb{C}[x]$ of degree n has at most n roots (in \mathbb{C}). (In fact, it has exactly n roots, when counted with multiplicities, but this is not true for congruences modulo p. For example the congruence $x^2 \equiv -1 \pmod{3}$ has degree 2, but no solutions.)

For the rest of today's class, we will use the convention that the zero polynomial in $\mathbb{C}[x]$ or $\mathbb{Z}[x]$, etc. has degree $-\infty$.

Theorem (Division Algorithm for Polynomials in $\mathbb{C}[x]$). Let $f, g \in \mathbb{C}[x]$ with $g \neq 0$. Then there are polynomials $q, r \in \mathbb{C}[x]$ such that f(x) = q(x)g(x) + r(x) and $\deg r < \deg g$. Moreover, q and r are unique with these properties.

Proof. Existence holds by long division of polynomials.

For uniqueness, suppose that

$$f(x) = q_1(x)g(x) + r_1(x) = q_2(x)g(x) + r_2(x)$$

with deg $r_1 < \deg g$ and deg $r_2 < \deg g$. If $q_1 \neq q_2$ then

$$r_2 - r_1 = -(q_1 - q_2)g$$
,

with $q_1 - q_2 \neq 0$. Then the right-hand side has degree $\geq \deg g$, but the left-hand side has degree $\langle \deg g \rangle$, a contradiction. So $q_1 = q_2$, and it then follows that $r_1 = r_2$.

Corollary. Let $f \in \mathbb{C}[x]$ and $a \in \mathbb{C}$. Then a is a root of f (i.e., f(a) = 0) if and only if $(x - a) \mid f$ (i.e., f(x) = (x - a)g(x) for some $g \in \mathbb{C}[x]$).

Proof. Write f(x) = (x - a)g(x) + r(x) with deg r < 1. Then r is a constant c (which may be zero). Substituting x = a gives f(a) = (a - a)g(a) + c = c (because a - a = 0), so f(a) = c. Therefore

$$f(a) = 0 \iff c = 0 \iff f(x) = (x - a)g(x) \iff (x - a) \mid f .$$

Corollary. If $f \in \mathbb{C}[x]$ and $a_1, \ldots, a_r \in \mathbb{C}$ are distinct roots of f (with r > 0), then writing $f(x) = (x - a_1)g(x)$, we have that a_2, \ldots, a_r are distinct roots of g.

Proof. Exercise.

Polynomials and Congruences Modulo p

Throughout the rest of today's class, p is a prime number.

We'll start by showing that a congruence modulo p of degree d can have at most d solutions, by mimicking what was done above for polynomials in \mathbb{C} .

Notes:

- (1). For all nonzero $z \in \mathbb{C}$ there is a number $z^{-1} \in \mathbb{C}$ such that $zz^{-1} = 1$.
- (2). For all $a \in \mathbb{Z}$ such that $a \not\equiv 0 \pmod{p}$ there is a number $a^{-1} \in \mathbb{Z}$ such that $aa^{-1} \equiv 1 \pmod{p}$.

Both are unique (up to congruence modulo p in the case of (2)).

Some Definitions

- **Definition.** Let $f \in \mathbb{Z}[x]$ and let $m \in \mathbb{Z}_{>0}$. Then a **root of** f **modulo** m is an integer a such that $f(a) \equiv 0 \pmod{m}$ (i.e., a solution of the congruence).
- **Definition.** A polynomial in $\mathbb{C}[x]$ (or $\mathbb{Z}[x]$) is **monic** if (it is nonzero and) its leading coefficient is 1.
- **Theorem** (Division Algorithm in $\mathbb{Z}[x]$). Let $f, g \in \mathbb{Z}[x]$, and assume that g is monic. Then there are polynomials $q, r \in \mathbb{Z}[x]$ such that

$$f(x) = q(x)g(x) + r(x)$$
 and $\deg r < \deg g$.

Moreover, q and r are unique with these properties.

Proof. Again, existence holds by long division (the only division of integers that occurs is division by the leading coefficient of g, which is possible in \mathbb{Z}).

Uniqueness holds by the same proof as before.

Corollary. Let $f \in \mathbb{Z}[x]$ and $a \in \mathbb{Z}$. Write f(x) = (x - a)g(x) + c for some $g \in \mathbb{Z}[x]$ and $c \in \mathbb{Z}$. Then c = f(a). In particular, for any $m \in \mathbb{Z}_{>0}$, an integer a is a root of f modulo m if and only if $f(x) \equiv (x - a)g(x) \pmod{m}$.

Proof. As before, we can write f(x) = (x - a)g(x) + r(x) with $g, r \in \mathbb{Z}[x]$ and deg r < 1. Since r has degree ≤ 0 , it equals a constant $c \in \mathbb{Z}$, so f(a) = c and therefore

$$a \text{ is a root of } f \text{ modulo } m \iff f(a) \equiv 0 \pmod{m}$$

 $\iff c \equiv 0 \pmod{m}$
 $\iff f(x) \equiv (x-a)g(x) \pmod{m}$.