
Math 115. Slides from the Lecture of October 3

This handout contains the slides from the lecture of October 3.

§ 2.7. Prime Modulus

The first sentence of Section 2.7 reads,

“We have now reduced the problem of solving f(x) ≡ 0 (mod m) to its
last stage, congruences with prime moduli.”

Well, not quite . . . (what if f ′(a) ≡ 0 (mod p) ?).
But, we proceed.
We’ll start by reviewing some facts about polynomials with coefficients in C or

R .

Polynomials with Coefficients in C

The main line of today’s class will mimic the following statements and proofs for
polynomials with coefficients in C (or R or Q ).

Definition. C[x] is the set of polynomials with coefficients in C . R[x] and Q[x] are
defined analogously.

We prove here that a nonzero polynomial in C[x] of degree n has at most n roots
(in C ). (In fact, it has exactly n roots, when counted with multiplicities, but this is
not true for congruences modulo p . For example the congruence x2 ≡ −1 (mod 3)
has degree 2 , but no solutions.)

For the rest of today’s class, we will use the convention that the zero polynomial
in C[x] or Z[x] , etc. has degree −∞ .

Theorem (Division Algorithm for Polynomials in C[x] ). Let f, g ∈ C[x] with g 6= 0 .
Then there are polynomials q, r ∈ C[x] such that f(x) = q(x)g(x) + r(x) and
deg r < deg g . Moreover, q and r are unique with these properties.

Proof. Existence holds by long division of polynomials.
For uniqueness, suppose that

f(x) = q1(x)g(x) + r1(x) = q2(x)g(x) + r2(x)

with deg r1 < deg g and deg r2 < deg g . If q1 6= q2 then

r2 − r1 = −(q1 − q2)g ,

with q1 − q2 6= 0 . Then the right-hand side has degree ≥ deg g , but the left-hand side
has degree < deg g , a contradiction. So q1 = q2 , and it then follows that r1 = r2 .
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Corollary. Let f ∈ C[x] and a ∈ C . Then a is a root of f (i.e., f(a) = 0 ) if and
only if (x− a) | f (i.e., f(x) = (x− a)g(x) for some g ∈ C[x] ).

Proof. Write f(x) = (x − a)g(x) + r(x) with deg r < 1 . Then r is a constant c
(which may be zero). Substituting x = a gives f(a) = (a − a)g(a) + c = c (because
a− a = 0 ), so f(a) = c . Therefore

f(a) = 0 ⇐⇒ c = 0 ⇐⇒ f(x) = (x− a)g(x) ⇐⇒ (x− a) | f . �

Corollary. If f ∈ C[x] and a1, . . . , ar ∈ C are distinct roots of f (with r > 0 ), then
writing f(x) = (x− a1)g(x) , we have that a2, . . . , ar are distinct roots of g .

Proof. Exercise. �

Polynomials and Congruences Modulo p

Throughout the rest of today’s class, p is a prime number.
We’ll start by showing that a congruence modulo p of degree d can have at most

d solutions, by mimicking what was done above for polynomials in C .

Notes:

(1). For all nonzero z ∈ C there is a number z−1 ∈ C such that zz−1 = 1 .
(2). For all a ∈ Z such that a 6≡ 0 (mod p) there is a number a−1 ∈ Z such that

aa−1 ≡ 1 (mod p) .

Both are unique (up to congruence modulo p in the case of (2)).

Some Definitions

Definition. Let f ∈ Z[x] and let m ∈ Z>0 . Then a root of f modulo m is an integer
a such that f(a) ≡ 0 (mod m) (i.e., a solution of the congruence).

Definition. A polynomial in C[x] (or Z[x] ) is monic if (it is nonzero and) its leading
coefficient is 1 .

Theorem (Division Algorithm in Z[x] ). Let f, g ∈ Z[x] , and assume that g is monic.
Then there are polynomials q, r ∈ Z[x] such that

f(x) = q(x)g(x) + r(x) and deg r < deg g .

Moreover, q and r are unique with these properties.

Proof. Again, existence holds by long division (the only division of integers that occurs
is division by the leading coefficient of g , which is possible in Z ).

Uniqueness holds by the same proof as before. �

Corollary. Let f ∈ Z[x] and a ∈ Z . Write f(x) = (x− a)g(x) + c for some g ∈ Z[x]
and c ∈ Z . Then c = f(a) . In particular, for any m ∈ Z>0 , an integer a is a
root of f modulo m if and only if f(x) ≡ (x− a)g(x) (mod m) .



3

Proof. As before, we can write f(x) = (x − a)g(x) + r(x) with g, r ∈ Z[x] and
deg r < 1 . Since r has degree ≤ 0 , it equals a constant c ∈ Z , so f(a) = c and
therefore

a is a root of f modulo m ⇐⇒ f(a) ≡ 0 (mod m)

⇐⇒ c ≡ 0 (mod m)

⇐⇒ f(x) ≡ (x− a)g(x) (mod m) . �


