
Math 115. More Complicated Congruences

This handout discusses congruences in more than one variable. It roughly follows
what we’ve done in class with congruences in one variable.

Definition. The notation Z[x1, . . . , xn] means the set of all polynomials in variables
x1, . . . , xn with integer coefficients.

In the following we’ll consider only a congruence f(x, y) ≡ 0 (mod m) with
f ∈ Z[x, y] and m ∈ Z>0 . Congruences in more than two variables are handled
similarly.

Throughout this handout, f ∈ Z[x, y] and m ∈ Z>0 .

Definition. Let f, g ∈ Z[x, y] . We say that f ≡ g (mod m) if all coefficients of f − g
are multiples of m . This holds if and only if f − g = mh for some h ∈ Z[x, y] .
This is an equivalence relation on Z[x, y] .

If f ≡ g (mod m) , then f(a, b) ≡ g(a, b) (mod m) for all a, b ∈ Z , so the con-
gruences f(x, y) ≡ 0 (mod m) and g(x, y) ≡ 0 (mod m) have the same solutions.

Also, if a1 ≡ a2 (mod m) and b1 ≡ b2 (mod m) , then f(a1, b1) ≡ f(a2, b2)
(mod m) , so one can describe solutions of the congruence f(x, y) ≡ 0 (mod m) by
giving a subset of C × C , where C is a complete residue system modulo m .

Definition. The number of solutions of a congruence f(x, y) ≡ 0 (mod m) is the num-
ber of elements of the set {(r, s) ∈ C × C : f(r, s) ≡ 0 (mod m)} , where C is a
complete residue system modulo m . This number is independent of the choice of
C .

One can define an equivalence relation ≡m on Z×Z by saying that (a, b) ≡m (a′, b′),
or equivalently (a, b) ≡ (a′, b′) (mod m) , if a ≡ a′ (mod m) and b ≡ b′ (mod m) .
Then the set {(a, b) ∈ Z × Z : f(a, b) ≡ 0 (mod m)} is a union of equivalence classes
under this equivalence relation, and the number of solutions of f(x, y) ≡ 0 (mod m)
(as defined above) is the number of these equivalence classes.

We won’t define the degree of a congruence f(x, y) ≡ 0 (mod m) . That can be
defined using the same principles as one would use to define the degree of a polynomial
in two (or more) variables. In other words, you first need to say what the degree of a
monomial xiyj is (usually it’s i+ j ).

Now we consider the Chinese Remainder Theorem. The statements we proved
about how the Chinese Remainder Theorem applies to solutions of congruences in one
variable can also be proved for congruences in two (or more) variables.

To begin, let m1, . . . ,mt be positive integers, pairwise relatively prime, and let
m = m1 · · ·mt . Let C and C1, . . . ,Ct be complete residue systems modulo m and
modulo m1, . . . ,mt , respectively. Recall that we defined a function

ψ : C → C1 × · · · × Ct ,

and showed that it is bijective. Recall also that ψ was defined by ψ(r) = (r1, . . . , rt)
for all r ∈ C , where ri ∈ Ci and ri ≡ r (mod mi) for all i .
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To deal with congruences in two variables, we define a similar function

ψ2 : C × C → (C1 × C1)× · · · × (Ct × Ct) ,

by letting ψ2(r, s) = ((r1, s1), . . . , (rt, st)) for all r, s ∈ C , where ri, si ∈ Ci , ri ≡ r
(mod mi) , and si ≡ s (mod mi) for all i .

The function ψ2 is also bijective. Indeed, since its domain and codomain are
finite sets with the same number m2 of elements, it suffices to show that it is in-
jective. This can be done by the same method as was done for ψ . Indeed, assume
that ψ2(r, s) = ψ2(r′, s′) , with r, s, r′, s′ ∈ C . Let ri, si for all i be as in the
definition of ψ2(r, s) , and let r′i, s

′
i for all i be defined similarly for ψ2(r′, s′) . If

ψ2(r, s) = ψ2(r′, s′) , then ri = r′i and si = s′i for all i ; therefore ψ(r) = (r1, . . . , rt) =
(r′1, . . . , r

′
t) = ψ(r′) , which implies r = r′ since ψ is injective. Similarly s = s′ , so

(r, s) = (r′, s′) and thus ψ2 is injective.
Corresponding to a corollary from class on 24 September, we then have:

Corollary. Let m1, . . . ,mt , m , C , and C1, . . . ,Ct be as above, and let f ∈ Z[x, y] .
Let C ′ ⊆ C × C be the set {(r, s) ∈ C × C : f(r, s) ≡ 0 (mod m)} , and let
C ′
i ⊆ Ci × Ci be similarly defined for all i . Then

ψ2(C ′) = C ′
1 × · · · × C ′

t .

Proof. Let r, s ∈ C , and let ((r1, s1), . . . , (rt, st)) = ψ2(r, s) . Then

f(r, s) ≡ 0 (mod m) ⇐⇒ f(r, s) ≡ 0 (mod mi) ∀ i ⇐⇒ f(ri, si) ≡ 0 (mod mi) ∀ i
⇐⇒ (ri, si) ∈ C ′

i ∀ i ⇐⇒ ψ2(r, s) ∈ C ′
1 × · · · × C ′

t

for the same reasons as in the earlier one-variable case. �

As a consequence, the number of solutions of the congruence f(x, y) ≡ 0 (mod
m ) is the product of the number of solutions (mod mi ) for all i , (as defined above),
by the same proof as in the one-variable case.

As an example, we give another proof that, if m1,m2 ∈ Z>0 are relatively prime,
then φ(m1m2) = φ(m1)φ(m2) , where φ is Euler’s totient function. Indeed, for all
m > 0 , φ(m) is the number of solutions of the congruence xy ≡ 1 (mod m) (the
proof is left to you as an exercise). Therefore we obtain the proof as an immediate
consequence of the above corollary.

Finally, all of the above can also be done for systems of congruences (in the same
modulus). Indeed, let f , C ′ , and C ′

1, . . . ,C
′
t be as above. Let g ∈ Z[x, y] be another

polynomial, and let C ′′ and C ′′
1 , . . . ,C

′′
t be defined similarly to C ′ , etc., for the

congruence g(x, y) ≡ 0 (mod m) and mod mi , respectively. Then C ′∩C ′′ represents
the set of congruence classes of solutions of the system f(x, y) ≡ g(x, y) ≡ 0 (mod m) ,
and similarly C ′

i ∩C ′′
i represents solutions of the same congruences mod mi for all i .

Therefore

ψ2(C ′ ∩ C ′′) = ψ2(C ′) ∩ ψ2(C ′′) = (C ′
1 × · · · × C ′

t ) ∩ (C ′′
1 × · · · × C ′′

t )

= (C ′
1 ∩ C ′′

1 )× · · · × (C ′
t ∩ C ′′

t ) .


