
Math 115. Slides from the Lecture of September 24

This handout contains the slides from the lecture of September 24.

Let’s look at the equation x2 ≡ 1 (mod 15) .
This has four solutions: x ≡ ±1,±4 (mod 15) .
Recall Theorem 2.3(3): Let m1, . . . ,mr ∈ Z>0 , with r ∈ Z>0 . Then x ≡ y

(mod mi) for all i = 1, . . . , r if and only if x ≡ y (mod lcm(m1, . . . ,mr)) .
By this theorem, x2 ≡ 1 (mod 15) is equivalent to x2 ≡ 1 (mod 3) and x2 ≡ 1

(mod 5) .
More generally:

x mod 15 x mod 3 x mod 5
1 1 1
4 1 4 (≡ −1)

11 (≡ −4) 2 (≡ −1) 1
14 (≡ −1) 2 (≡ −1) 4 (≡ −1)

So, we can “mix and match” solutions modulo 3 and solutions modulo 5 to get
solutions modulo 15.

A More General Question

Given m1, . . . ,mr ∈ Z>0 and a1, . . . , ar ∈ Z , what can we say about integer
solutions x to the system:

x ≡ a1 (mod m1)

x ≡ a2 (mod m2)

. . .

x ≡ ar (mod mr)

(*)

The Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem). Let a1, . . . , ar ∈ Z be given, and assume that
m1, . . . ,mr are pairwise relatively prime positive integers. Let m = m1 · · ·mr .
Then the system (*) has solutions. Moreover, if x0 ∈ Z is one such solution, then
x ∈ Z is a solution if and only if x ≡ x0 (mod m) .

Proof. Case I: r = 1 . This is trivial.

Case II: r = 2 . Since gcd(m1,m2) = 1 , there are integers c1 and c2 such that
c1m1 + c2m2 = 1 . Then

c1m1 ≡ 0 (mod m1)

c1m1 ≡ 1 (mod m2)
and

c2m2 ≡ 1 (mod m1)

c2m2 ≡ 0 (mod m2)
1
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Let x0 = a1c2m2 + a2c1m1 . Then

x0 ≡ a1 · 1 + a2 · 0 = a1 (mod m1) and

x0 ≡ a1 · 0 + a2 · 1 = a2 (mod m2) ,

so it is a solution of (*).
Now let x ∈ Z . Then:

x is another solution ⇐⇒ x ≡ ai (mod mi) for all i

⇐⇒ x ≡ x0 (mod mi) for all i

⇐⇒ x ≡ x0 (mod m) .

This gives the last sentence.
The above is true for all r , but we still need to prove the main part for arbitrary

r . This can be done by induction on r .

Case III: r > 2 . This will be done by induction. The base case r = 2 has been
done already.

So, assume that r > 2 and that the theorem is true when r is replaced by r− 1 .
By the inductive hypothesis there is an a0 such that a0 ≡ ai (mod mi) for all

i < r . By the r = 2 case there is an integer x0 such that x0 ≡ a0 (mod m1 · · ·mr−1)
and x0 ≡ ar (mod mr) . This integer satisfies all parts of the system (*), because for
all i < r we have

x0 ≡ a0 ≡ ai (mod mi) ,

and we still have x0 ≡ ar (mod mr) . �

How To Compute???

Method 1: Follow the above proof (or the book’s proof).

Example. Solve the congruences

x ≡ 2 (mod 7)

x ≡ 3 (mod 9) .

Noting that
4 · 9− 5 · 7 = 1 ,

we have
36 ≡ 1 (mod 7)

36 ≡ 0 (mod 9)
and

−35 ≡ 0 (mod 7)

−35 ≡ 1 (mod 9)

Then we can let

x0 = 2(36) + 3(−35) = 72− 105 = −33
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to conclude that the solution set is all integers x such that x ≡ −33 (mod 63) (or
x ≡ 30 (mod 63) ).

Method 2: A separate method from the book. (This method does not require that
m1, . . . ,mr be pairwise relatively prime.)

The first congruence x ≡ 2 (mod 7) is equivalent to x = 7u + 2 with u ∈ Z .
Substitute this value for x into the second congruence x ≡ 3 (mod 9) :

2 + 7u ≡ 3 (mod 9)

7u ≡ 1 (mod 9)

Using the equation 4 · 9− 5 · 7 = 1 , we find that 7−1 ≡ −5 ≡ 4 (mod 9) . So, multiply
both sides by 4 :

28u ≡ 4 (mod 9)

u ≡ 4 (mod 9)

u = 9v + 4 with v ∈ Z .

Now substitute this value (u = 9v + 4 ) into x = 7u + 2 to get the answer:

x = 7(9v + 4) + 2 = 63v + 28 + 2 = 63v + 30 .

We conclude that x satisfies the two given congruences if and only if x ≡ 30 (mod 63) .

Techniques of Numerical Calculation

The main points of Section 2.4 (and related facts) for us are:

A. “Polynomial time”

Definition. An algorithm runs in polynomial time if the time it takes is at most some
polynomial function of the length of the input .

Examples:

• Addition: Adding an n-digit number and an m-digit number takes at most
max{n,m}+ 1 steps. This is polynomial time (actually, linear time).

• Multiplication: 2mn , so polynomial time (quadratic)
• Division (division algorithm): likewise
• Euclidean algorithm: The number of iterations is linear in the number of digits

of the smaller of the two numbers. Each iteration takes time quadratic in the
length of the input, so this takes place in polynomial time.

• Factoring a number n by trial division takes
√
n divisions. But:

√
n ≈ 3number of digits in n .

So: exponential time.
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B. Computing ak modm in polynomial time.

See the algorithm in the book.

C. Primality testing: Given an integer m > 0 , is it prime?

Mostly this relies on Fermat’s Little Theorem:
If there is an integer a such that 0 < a < m and am−1 6≡ 1 (mod m) , then m is

not prime.
For each such a , this can be tested in polynomial time, by (B).

Definition. Let a ∈ Z with a > 1 . Then an integer m > 1 is a (weak) probable prime
to the base a if am−1 ≡ 1 (mod m) , and is a (weak) pseudoprime to the base a
if in addition m is not prime.

Definition. A Carmichael number is a composite number m which is a weak pseudo-
prime to the base a for all integers a relatively prime to m .

The smallest Carmichael number is 561.

A better primality test.

Definition. Let m be an integer > 1 and write m − 1 = 2jd with j ∈ N and d
odd. Let a ∈ Z with a > 1 . Then m is a strong probable prime to the base a if
am−1 ≡ 1 (mod m) , and the last element in the sequence

ad, a2d, a4d, . . . , a2
jd = am−1

which is 6≡ 1 (mod m) (if any) is ≡ −1 (mod m) . (So if ad ≡ 1 (mod m) then
it is a strong probable prime.)

Strong pseudoprime to the base a is defined similarly.

D. Other tidbits:

• There is a test for primality that runs in polynomial time (AKS, 2002).
• Factoring a number is not known to have a polynomial-time algorithm.


